
NPS-MA-04-001

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

 Approved for public release; distribution is unlimited.

 Prepared for: National Security Agency

A Very Compact Rijndael S-box

by

D. Canright

28 September 2004

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

RDML Patrick W. Dunne, USN Richard Elster
Superintendent Provost

This report was prepared for the National Security Agency and funded by the National Security
Agency.

Reproduction of all or part of this report is authorized.

This report was prepared by:

David Canright
Associate Professor of Mathematics

Reviewed by: Released by:

________________________ ______________________________
Clyde Scandrett, Chairman Leonard A. Ferrari, Ph.D.
Department of Applied Mathematics Associate Provost and
 Dean of Research

REPORT DOCUMENTATION PAGE

Form approved

OMB No 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
 28 September 2004

3. REPORT TYPE AND DATES COVERED
Technical Report 6 July - 24 September 2004

4. TITLE AND SUBTITLE

A Very Compact Rijndael S-box

5. FUNDING

 MIPR No. H98230-B104-1208

6. AUTHOR(S)

D. Canright

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
 REPORT NUMBER
NPS-MA-04-001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Security Agency
9800 Savage Road, Ste. 6538
Fort Meade, MD 20755-6538

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

 A

13. ABSTRACT (Maximum 200 words.)
 One key step in the Advanced Encryption Standard (AES), or Rijndael, algorithm is called the "S-box", the
only nonlinear step in each round of encryption/decryption. A wide variety of implementations of AES have
been proposed, for various desiderata, that effect the S-box in various ways. In particular, the most compact
implementation to date of Satoh et al. performs the 8-bit Galois field inversion of the S-box using subfields of 4
bits and of 2 bits. This work describes a refinement of this approach that minimizes the circuitry, and hence the
chip area, required for the S-box. While Satoh used polynomial bases at each level, we consider also normal
bases, with arithmetic optimizations; altogether, 432 different cases were considered. The isomorphism bit
matrices are fully optimized, improving on the "greedy algorithm." The best case reduces the number of gates in
the S-box by 16%. This decrease in chip area could be important for area-limited hardware implementations,
e.g., smart cards. And for applications using larger chips, this approach could allow more copies of the S-box,
for parallelism and/or pipelining in non-feedback modes of AES.
14. SUBJECT TERMS

cryptography, encryption, AES, Rijndael, Galois fields, FPGA, ASIC

15. NUMBER
OF PAGES
66

 16. PRICE
CODE

17. SECURITY
CLASSIFICATION
 OF REPORT
 UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE
 UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT
 UNCLASSIFIED

20. LIMITATION
OF
 ABSTRACT

UNCLASSIFIED

NSN 7540-01-280-5800 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std 239-18

A Very Compact Rijndael S-box

D. Canright
Applied Mathematics Dept., Code MA/Ca

Naval Postgraduate School
Monterey, CA 93943

September 28, 2004

Abstract

One key step in the Advanced Encryption Standard (AES), or Rijndael, algorithm
is called the “S-box”, the only nonlinear step in each round of encryption/decryption.
A wide variety of implementations of AES have been proposed, for various desiderata,
that effect the S-box in various ways. In particular, the most compact implementation
to date of Satoh et al.[12] performs the 8-bit Galois field inversion of the S-box using
subfields of 4 bits and of 2 bits. This work describes a refinement of this approach
that minimizes the circuitry, and hence the chip area, required for the S-box. While
Satoh[12] used polynomial bases at each level, we consider also normal bases, with
arithmetic optimizations; altogether, 432 different cases were considered. The isomor-
phism bit matrices are fully optimized, improving on the “greedy algorithm.” The best
case reduces the number of gates in the S-box by 16%. This decrease in chip area could
be important for area-limited hardware implementations, e.g., smart cards. And for
applications using larger chips, this approach could allow more copies of the S-box, for
parallelism and/or pipelining in non-feedback modes of AES.

1 Introduction

The Advanced Encryption Standard (AES) was specified in 2001 by the National Institute
of Standards and Technology [9]. The purpose is to provide a standard algorithm for en-
cryption, strong enough to keep U.S. government documents secure for at least the next 20
years. The earlier Data Encryption Standard (DES) had been rendered insecure by advances
in computing power, and was effectively replaced by triple-DES. Now AES will largely re-
place triple-DES for government use, and will likely become widely adopted for a variety of
encryption needs, such as secure transactions via the Internet. As Secretary of Commerce
Norman Y. Mineta put it in announcing AES, “. . . this standard will serve as a critical
computer security tool supporting the rapid growth of electronic commerce. This is a very
significant step toward creating a more secure digital economy. It will allow e-commerce and
e-government to flourish safely, creating new opportunities for all Americans.”[7]
A wide variety of approaches to implementing AES have appeared, to satisfy the varying

criteria of different applications. Some approaches seek to maximize throughput, e.g., [5], [14]

1

and [2]; others minimize power consumption, e.g., [6]; and yet others minimize circuitry, e.g.,
[11], [12], [15], and [1]. For the latter goal, Rijmen[10] suggested using subfield arithmetic
in the crucial step of computing an inverse in the Galois Field of 256 elements–essentially
expressing an 8-bit calculation in terms of 4-bit ones. This idea was further extended by
Satoh et al.[12], breaking up the 4-bit calculations into 2-bit ones, which resulted in the
smallest AES circuit to date.
The current work improves on the compact implementation of [12] in the following ways.

Many (432) choices of representation (isomorphisms) were compared, and the most compact
turns out to use a normal basis for each subfield ([12] uses a polynomial basis for each
subfield). And while [12] used the “greedy algorithm” to reduce the number of gates in the
bit matrices required in changing representations, here each bit matrix is fully optimized,
resulting in the minimum number of gates. These various refinements result in an S-box
circuit that is 16% smaller, a significant improvement.
The AES algorithm, also called the Rijndael algorithm, is a symmetric encryption algo-

rithm, meaning encryption and decryption are performed by essentially the same steps. It
is a block cipher, where the data is encrypted/decrypted in blocks of 128 bits. (The original
Rijndael algorithm allows other block sizes, but the Standard only permits 128-bit blocks.)
Each data block is modified by several “rounds” of processing, where each round involves
four steps. Three different key sizes are allowed: 128 bits, 192 bits, or 256 bits, and the
corresponding number of rounds for each is 10 rounds, 12 rounds, or 14 rounds, respectively.
From the original key, a different “round key” is computed for each of these rounds. For
simplicity, the discussion below will use a key length of 128 bits and hence 10 rounds.
There are several different modes in which AES can be used [8]. For some of these, such

as Cipher Block Chaining (CBC), the result of encrypting one block is used in encrypting
the next. These are called feedback modes, and the feedback effectively precludes pipelining
(simultaneous processing of several blocks in the “pipeline”). Other modes, such as the
“Electronic Code Book” mode or “Counter” modes, do not require feedback. These non-
feedback modes may be pipelined for greater throughput.
The four steps in each round of encryption, in order, are called SubBytes (byte substitu-

tion), ShiftRows, MixColumns, and AddRoundKey. Before the first round, the input block
is processed by AddRoundKey; one could consider this round number zero. Also, the last
round, number ten, skips the MixColumns step. Otherwise, all rounds are the same, except
each uses a different round key, and the output of one round becomes the input for the next.
(For decryption, the mathematical inverse of each step is used, in reverse order; certain
manipulations allow this to appear like the same steps as encryption with certain constants
changed.)
Of these four steps, three of them (ShiftRows, MixColumns, and AddRoundKey) are

linear, in the sense that the output 128-bit block for such steps is just the linear combination
(bitwise, modulo 2) of the outputs for each separate input bit. These three steps are all easy
to implement by direct calculation in software or hardware.
The single nonlinear step is the SubBytes (byte substitution) step, where each byte (8

bits) of the input is replaced by the result of applying the “S-box” function to that byte.
This nonlinear function involves finding the inverse of the 8-bit number, considered as an
element of the Galois field GF(28). This is not a simple calculation, and so many current
implementations use a table of the S-box function output; the input byte is an index into

2

the table to find the output. This table look-up method is fast and easy to implement.
But for hardware implementations of AES, there is one drawback of the table look-up

approach to the S-box function: each copy of the table requires 256 bytes of storage, along
with the circuitry to address the table and fetch the results. Each of the 16 bytes in a block
can go through the S-box function independently, and so could be processed in parallel for
the byte substitution step. This then effectively requires 16 copies of the S-box table for one
round. To fully pipeline the encryption would entail “unrolling” the loop of 10 rounds into
10 sequential copies of the round calculation. This would require 160 copies of the S-box
table, a significant allocation of hardware resources.
In contrast, this work describes a direct calculation of the S-box function using sub-field

arithmetic, similar to [12]. While the calculation is complicated to describe, the advantage
is that the circuitry required to implement this in hardware is relatively simple, in terms
of the number of logic gates required. This type of S-box implementation is significantly
smaller (less area) than the table it replaces, especially with the optimizations in this work.
Furthermore, when chip area is limited, this compact implementation may allow parallelism
in each round and/or unrolling of the round loop, for a significant gain in speed.
The rest of the paper describes the algorithm in detail. Section 2 describes some basics

of Galois field arithmetic and representations, essential to the algorithm. The basic idea of
the algorithm is explained in Section 3. Section 4 discusses ways to optimize the calculation,
Section 5 describes the choices of representation, and Section 6 gives the detailed formulas
of the algorithm. Finally, Section 7 summarizes the work.

2 Galois Fields GF(2n)

Finite fields, or Galois fields, are important in many applications, such as error-correcting
codes[4], and have been studied extensively (one good reference is [3]). Here we give only a
brief, informal introduction to the properties necessary for the AES algorithm.
A field is a set F of elements with two binary operations, say ⊕ and ⊗. We will call

these addition and multiplication, and will sometimes use the standard notation a + b and
ab instead of a⊕ b and a⊗ b, for simplicity. These operations must satisfy certain properties
(here a, b, c represent arbitrary elements of F):

1. the set is closed with respect to both operations:

(a) a⊕ b ∈ F
(b) a⊗ b ∈ F

2. both operations are associative:

(a) (a⊕ b)⊕ c = a⊕ (b⊕ c)
(b) (a⊗ b)⊗ c = a⊗ (b⊗ c)

3. both operations are commutative:

(a) a⊕ b = b⊕ a

3

(b) a⊗ b = b⊗ a
4. the operations obey the distributive law: (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)
5. each operation has an identity (call the identities 0 and 1):

(a) a⊕ 0 = a
(b) a⊗ 1 = a

6. each element a has an additive inverse (say q): a⊕ q = 0 (this defines subtraction; the
standard notation for the additive inverse of a is −a)

7. each nonzero element a W= 0 has a multiplicative inverse (say r): a⊗ r = 1 (this defines
division; the standard notation for the multiplicative inverse of a is a−1)

Familiar examples are the field of rational numbers, the field of real numbers, and the field
of complex numbers. If a subset of a field is itself a field, using the same operations, then it
is called a subfield. For example, the rational numbers is a subfield of the real numbers.
If a field has only a finite number of elements, it is a finite field. But given some finite

set, it is not always possible to define two operations with the above properties; it is only
possible if the number of elements in the set is of the form pn where p is a prime number
and n is a positive integer. Then pn is called the order of the field and p is called the
characteristic of the field. So there is no field of 6 elements, for example, but there is a field
of 7 elements and a field of 8 (= 23) elements. Given a set of pn elements there may be more
than one way to define the operations to produce a field, but these different ways give fields
that are isomorphic: by changing the names we can change one field into the other–the
structure remains the same. So in this sense there is only one finite field for a given number
of elements pn; we call this the Galois Field GF(pn). (We will also use the notation of [3]
for this field: Fk, where k = pn.) If a positive integer m is a factor of n, then GF(pm) is a
subfield of GF(pn).
The simplest example is GF(2) = {0, 1} with the usual addition and multiplication except

1 ⊕ 1 = 0; this is also called arithmetic modulo 2. Note that in this field, each element is
its own additive inverse, so subtraction is the same as addition. This is true for all fields
GF(2k) of characteristic 2.
Another example that will be important later is GF(22), whose elements will be labeled

{0, 1,Ω,Ψ}. The operations are defined by the tables below:
⊕ 0 1 Ω Ψ

0 0 1 Ω Ψ
1 1 0 Ψ Ω
Ω Ω Ψ 0 1
Ψ Ψ Ω 1 0

⊗ 0 1 Ω Ψ

0 0 0 0 0
1 0 1 Ω Ψ
Ω 0 Ω Ψ 1
Ψ 0 Ψ 1 Ω

Note that if we swap the names Ω and Ψ everywhere, we get exactly the same operations,
i.e., the same field. Also note that GF(22) contains the subfield GF(2) = {0, 1}.
There are several different ways to look at a Galois field. An element a of GF(pn) is

called primitive if all its powers are different: a0 W= a1 W= a2 W= · · · W= apn−2. (For any nonzero

4

element b then bp
n−1 = 1; for any element b then bp

n
= b.) Hence the powers of a primitive

element give all the nonzero elements of GF(pn). Every finite field has at least one primitive
element, so one way to look at the field is in terms of powers of that element. For example,
in GF(22), Ω is a primitive element: 1 = Ω0,Ω = Ω1,Ψ = Ω2. This viewpoint makes
multiplication easy: add the exponents modulo pn − 1. But then addition is less obvious.
Another viewpoint involves polynomials, in some variable x, with coefficients in GF(p);

these are called polynomials over GF(p). Each element of GF(pn) can be considered a poly-
nomial over GF(p), of degree less than n. Then addition just means adding the coefficients
modulo p. Multiplication must be done modulo some specified polynomial q(x), of degree n,
with leading coefficient equal to 1; also q(x) must be irreducible, which means it is not the
product of two polynomials of lower order.
For example, in GF(22) the only choice for q(x) is x2 + x+ 1 (because the others factor:

x2 = x∗x, x2+x = x∗(x+1), x2+1 = (x+1)∗(x+1); remember the coefficient arithmetic is
modulo 2). Then we could think of GF(22) as {0, 1, x, x+1} where x⊗x = (x2 modulo q) =
x2 ⊕ (x2 + x + 1) = x + 1, and similarly x ⊗ (x + 1) = (x2 + x) ⊕ (x2 + x + 1) = 1 and
(x+ 1)⊗ (x+ 1) = (x2 + 1)⊕ (x2 + x+ 1) = x.
This polynomial viewpoint makes more sense if we think of the variable x as being a root

of the polynomial, so q(x) = 0. Then adding or subtracting multiples of q(x) is just adding
zero. In the first representation of GF(22), note that Ω2⊕ (Ω⊕ 1) = Ψ⊕Ψ = 0, so we could
identify x = Ω. Alternatively, we could identify x = Ψ (switching the names as before), the
other root.
Another viewpoint is that the field GF(pn) is a vector space of dimension n, with vector

addition ⊕ and multiplication by scalars in GF(p) (i.e., modulo p). (The vector viewpoint
is convenient for choosing a representation, but does not fully reflect the multiplication
operation ⊗.) Then any n linearly independent elements {b1, b2, . . . , bn} of GF(pn) gives a
basis, and we can indicate any element a by its list of coefficients with respect to this basis:
if a = c1⊗ b1⊕ c2⊗ b2⊕ . . .⊕ cn⊗ bn (with each ci ∈ GF(p)) then a is represented by the list
of numbers [c1, c2, . . . , cn]. For small p this list commonly is written as digits in positional
notation: c1c2 . . . cn.
For example, the polynomial viewpoint for GF(22), with x = Ω, corresponds to using the

ordered basis [Ω1,Ω0]; this is called a polynomial basis. Using this basis: 0 = 0Ω1+0Ω0 ≡ 00,
1 = 0Ω1 + 1Ω0 ≡ 01, Ω = 1Ω1+ 0Ω0 ≡ 10, Ψ = 1Ω1+ 1Ω0 ≡ 11. This defines a field of 2-bit
binary numbers (where ⊕ is bitwise exclusive-or), where for example 11⊗ 11 = 10.
But different choices of basis are also possible. Another type of basis with convenient

properties is called a normal basis, of the form {bp0 , bp1 , . . . , bpn−1}, where the element b of
GF(pn) must be chosen to make that set of powers linearly independent. (One nice property
is that an isomorphism [name change] on the field has the same effect as rotating this list of
basis elements.)
Using the ordered normal basis [Ω2

1
,Ω2

0
] = [Ψ,Ω] for GF(22) gives the correspondence

0 = 0Ψ + 0Ω ≡ 00, 1 = 1Ψ + 1Ω ≡ 11, Ω = 0Ψ + 1Ω ≡ 01, Ψ = 1Ψ + 0Ω ≡ 10. This gives
a different 2-bit representation of GF(22); addition ⊕ is still bitwise exclusive-or, but now
for example 11 ⊗ 11 = 11. So in one sense this is a different field, but it has exactly the
same structure as the previous version, only the names have been changed to confuse the
innocent.
The polynomial representation idea can be generalized. For any finite field F (of char-

5

acteristic p) containing a subfield S, where S is of order r = pj and F is of order rk = pjk,
then the elements of F can be represented as polynomials of degree less than k, with co-
efficients in S (i.e., polynomials over S). We notate this view of the field as F/S (read as
F “over” S). Again, addition just means adding the coefficients in S, and multiplication is
done modulo some polynomial q(x), of degree k. The coefficients of q(x) also belong to S,
with the leading coefficient equal to 1, and q(x) must be irreducible over S (no element of
S is a root). For example, the elements of GF(56) can be represented as polynomials of the
form c2x

2+ c1x+ c0, with all the ci ∈ GF(52), modulo the polynomial q(x) = x3+x2+x+3,
which is irreducible over GF(52).
Since the names of the elements of GF(pn) change with choice of representation, we

might wonder if the elements have certain properties that are independent of representation,
a sort of identification. One such property is the minimal polynomial (over GF(p)) of a given
element a. This is the irreducible polynomial of smallest degree, with coefficients in GF(p)
and leading coefficient = 1, having a as a root. The degree m of the minimal polynomial is
always ≤ n, and that minimal polynomial hasm distinct roots in GF(pn). Elements with the
same minimal polynomial are called conjugates; if one of them is a then them conjugates are
{a, ap, ap2 , . . . , apm−1}. Each isomorphism of GF(pn) corresponds to replacing each element b
by bp

k
(for some integer k), and so in effect rotates each set of conjugates. For any primitive

element, the minimal polynomial is called a primitive polynomial and has degree n. (Note
that a normal basis is a set of n distinct conjugates.) In GF(22) for example, the minimal
polynomial for 0 is x, that for 1 is x + 1, and the one for Ω and Ψ is x2 + x + 1 (they are
conjugate primitive elements).
Again, these ideas can be extended to elements of F = GF(pn) as polynomials over any

subfield S of order r = pj , where n = jk for some k, so F is of order rk. Then each element a
of F has a minimal polynomial over S, of degree m ≤ k, with m distinct roots in F , and the
m conjugates of a over S are {a, ar, ar2, . . . , arm−1}. Also F/S is a vector space of dimension
k over S, and a normal basis is a set of k distinct conjugates.
The trace of a over S is then defined as

TrF/S(a) ≡ a+ ar + ar2 + . . .+ ark−1

and the norm is defined as

NF/S(a) ≡ a · ar · ar2 · . . . · ark−1

(If the minimal polynomial of a is of degree k, then the trace is the sum of the conjugates
and the norm is the product of the conjugates.) It turns out that both the trace and the
norm are always elements of the subfield S. For example, in GF(22)/GF(2), both the trace
and the norm of Ω are 1.
This brief introduction to Galois fields only covers the points relevant to the algorithm

below. A nice, succinct introduction is given in [4]; for more depth and rigor, see [3].

3 S-box Algorithm

The S-box function of an input byte a is defined by two substeps:

6

1. Inverse: Let c = a−1, the multiplicative inverse in GF(28) (except if a = 0 then c = 0).

2. Affine Transformation: Then the output is s = M c⊕ b, where M is a specified 8× 8
matrix of bits, b is a specified byte, and the bytes c, b, s are treated as vectors of bits.
More explicitly:

s7
s6
s5
s4
s3
s2
s1
s0


=



1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1





c7
c6
c5
c4
c3
c2
c1
c0


⊕



0
1
1
0
0
0
1
1


where bit #7 is the most significant and all bit operations are modulo 2.

The second substep is affine (linear plus a constant) and easy to implement; the algorithm
for the first substep, finding the inverse, is described below.
The AES algorithm uses the particular Galois field of 8-bit bytes where the bits are

coefficients of a polynomial (i.e., a polynomial basis), and multiplication is modulo the
irreducible polynomial q(x) = x8 + x4 + x3+ x+ 1. (A 9-bit binary representation is q(x) =
100011011; this is the “smallest” irreducible polynomial of degree 8 over GF(2), in the sense
of comparing the binary number representations.) Let A be one root of q(x); we will think of
the polynomial basis as [A7, A6, A5, A4, A3, A2, A, 1]. It turns out that A = 00000010 is not a
primitive element, but A+1 = 00000011 is; we call it B. (B is a root of the second smallest
irreducible polynomial: 100011101; see Table D.3 for more details.) Some implementations
of AES use logarithm and antilogarithm tables, base B (as shown in Appendix D), for finding
inverses and products in GF(28). In particular, A = B25. (Note: we will use Roman letters
for specific elements of GF(28), lowercase Greek letters for elements of GF(24), and uppercase
Greek letters for GF(22); the naming scheme is summarized in Table D.3.)
Direct calculation of the inverse (modulo an eighth-degree polynomial) of a seventh-degree

polynomial is not easy. But calculation of the inverse (modulo a second-degree polynomial)
of a first-degree polynomial is relatively easy, as pointed out by Rijmen [10]. This suggests
the following changes of representation.
First, we use the isomorphism between GF(28) and GF(28)/GF(24) to represent a general

element g of GF(28) as a polynomial (in y) over GF(24), of degree 1 or less, as g = γ1y+ γ0,
with multiplication modulo an irreducible polynomial r(y) = y2 + τy + ν. Here, all the
coefficients are in GF(24). Then the pair [γ1, γ0] represents g in terms of a polynomial
basis [Y, 1] where Y is one root of r(y). Of course, we are free to use any basis for this
representation, for example the normal basis [Y 16, Y]. Note that

r(y) = y2 + τy + ν = (y + Y)(y + Y 16)

so τ = TrF256/F16(Y) is the trace and ν = NF256/F16(Y) is the norm of Y .
Second, using GF(24)/GF(22) we can similarly represent GF(24) as linear polynomials

(in z) over GF(22), as γ = Γ1z + Γ0, with multiplication modulo an irreducible polynomial

7

s(z) = z2 + Tz +N , with all the coefficients in GF(22). Again, this uses a polynomial basis
[Z, 1] for GF(24)/GF(22), where Z is one root of s(z). We could use any basis, such as the
normal basis [Z4, Z]. And for the same reasons above, T = TrF16/F4(Y) is the trace and
N = NF16/F4(Y) is the norm of Z (considering T and N as uppercase Greek for τ and ν).
Third we use GF(22)/GF(2) to represent GF(22) as linear polynomials (in w) over GF(2),

as Γ = g1w + g0, with multiplication modulo t(w) = w
2 + w + 1, where g1, g0 ∈ {0, 1}. This

uses a polynomial basis [W, 1], where W is either Ω or Ψ; a normal basis would be [W 2,W].
(Note that the trace and norm of Ω and Ψ are 1.)
This allows operations in GF(28) to be expressed in terms of simpler operations in GF(24),

which in turn are expressed in the simple operations of GF(22). In particular, we want to
find the inverse in GF(28). Say the inverse of g = γ1y + γ0 is d = δ1y + δ0. Then (recalling
subtraction is the same as addition in GF(2n))

gd = (γ1y + γ0)(δ1y + δ0) mod (y
2 + τy + ν)

= [(γ1δ1)y
2 + (γ1δ0 + γ0δ1)y + (γ0δ0)] mod (y

2 + τy + ν)

= [(γ1δ1)y
2 + (γ1δ0 + γ0δ1)y + (γ0δ0)] + (γ1δ1)(y

2 + τy + ν)

= (γ1δ0 + γ0δ1 + γ1δ1τ)y + (γ0δ0 + γ1δ1ν)

= 1 = 0y + 1

Solving the two equations

0 = γ1δ0 + (γ0 + γ1τ)δ1

1 = γ0δ0 + (γ1ν)δ1

by

0 = γ1γ0δ0 + (γ
2
0 + γ1γ0τ)δ1

γ1 = γ1γ0δ0 + (γ
2
1ν)δ1

gives

γ1 = (γ21ν + γ1γ0τ + γ20)δ1

γ1δ0 = (γ0 + γ1τ)δ1

so that

δ1 = (γ21ν + γ1γ0τ + γ20)
−1 γ1

δ0 = (γ21ν + γ1γ0τ + γ20)
−1 (γ0 + γ1τ)

So finding an inverse in GF(28) involves an inverse and several multiplications in GF(24).
(Addition in GF(24) as 4-bit elements, using any basis, is just bitwise exclusive-or.)
Similarly, to find the inverse in GF(24) of γ = Γ1z + Γ0 as δ = ∆1z +∆0, then

γδ = (Γ1∆0 + Γ0∆1 + Γ1∆1T)z + (Γ0∆0 + Γ1∆1N)

8

so

∆1 = (Γ21N + Γ1Γ0T + Γ
2
0)
−1 Γ1

∆0 = (Γ21N + Γ1Γ0T + Γ
2
0)
−1 (Γ0 + Γ1T)

And to find the inverse in GF(22) of Γ = g1w + g0 as ∆ = d1w + d0, then

Γ∆ = (g1d0 + g0d1 + g1d1)w + (g0d0 + g1d1)

so

d1 = (g21 + g1g0 + g
2
0)
−1 g1

d0 = (g21 + g1g0 + g
2
0)
−1 (g0 + g1)

since both coefficients (trace and norm) in the polynomial t(w) are 1. This can be further
simplified because for g ∈ GF(2), g2 = g−1 = g, so

d1 = (g1 + g1g0 + g0) g1

= (g1 + g1g0 + g1g0)

= g1

d0 = (g1 + g1g0 + g0) (g0 + g1)

= (g1g0 + g1 + g1g0 + g1g0 + g0 + g1g0)

= g1 + g0

Note that if the above inversion formulas are applied to a zero input then the output will
also be zero, so that special case is handled automatically.
How do these calculations change if we use normal bases at each level? In GF(28), to

find the inverse of g = γ1Y
16+γ0Y as d = δ1Y

16+ δ0Y , we use the fact that both Y and Y
16

satisfy y2 + τy + ν = 0 where τ = Y 16 + Y and ν = (Y 16)Y . Then 1 = τ−1(Y 16 + Y), so:

gd = (γ1Y
16 + γ0Y)(δ1Y

16 + δ0Y)

= (γ1δ1)(Y
16)2 + (γ1δ0 + γ0δ1)(Y

16)Y + (γ0δ0)Y
2

= (γ1δ1)(τY
16 + ν) + (γ1δ0 + γ0δ1)ν + (γ0δ0)(τY + ν)

= (γ1δ1τ)Y
16 + (γ0δ0τ)Y + [(γ1δ1)ν + (γ1δ0 + γ0δ1)ν + (γ0δ0)ν)]

= (γ1δ1τ)Y
16 + (γ0δ0τ)Y + [(γ1 + γ0)(δ1 + δ0)ν]τ

−1(Y 16 + Y)
= [γ1δ1τ + (γ1 + γ0)(δ1 + δ0)ντ

−1]Y 16 + [γ0δ0τ + (γ1 + γ0)(δ1 + δ0)ντ
−1]Y

= 1 = τ−1(Y 16 + Y)

Solving the two equations

τ−1 = γ1δ1τ + (γ1 + γ0)(δ1 + δ0)ντ
−1

τ−1 = γ0δ0τ + (γ1 + γ0)(δ1 + δ0)ντ
−1

9

gives

0 = γ1δ1 + γ0δ0

1 = γ1δ1τ
2 + (γ1δ0 + γ0δ1)ν

γ0 = γ1γ0δ1τ
2 + (γ1γ0δ0 + γ20δ1)ν

= γ1γ0δ1τ
2 + (γ21δ1 + γ20δ1)ν

= [γ1γ0τ
2 + (γ21 + γ20)ν]δ1

so that

δ1 = [γ1γ0τ
2 + (γ21 + γ20)ν]

−1 γ0
δ0 = [γ1γ0τ

2 + (γ21 + γ20)ν]
−1 γ1

Again, finding an inverse in GF(28) involves an inverse and several multiplications in GF(24).
Analogously, to find the inverse in GF(24) of γ = Γ1Z

4 + Γ0Z as δ = ∆1Z
4 +∆0Z, then

γδ = [Γ1∆1T + (Γ1 + Γ0)(∆1 +∆0)NT
−1]Z4 + [Γ0∆0T + (Γ1 + Γ0)(∆1 +∆0)NT

−1]Z

so

∆1 = [Γ1Γ0T
2 + (Γ21 + Γ

2
0)N]

−1 Γ0
∆0 = [Γ1Γ0T

2 + (Γ21 + Γ
2
0)N]

−1 Γ1

And to find the inverse in GF(22) of Γ = g1W
2 + g0W as ∆ = d1W

2 + d0W , then

Γ∆ = [g1d1 + (g1 + g0)(d1 + d0)]W
2 + [g0d0 + (g1 + g0)(d1 + d0)]W

so

d1 = [g1g0 + g1 + g0] g0

= g0

d0 = [g1g0 + g1 + g0] g1

= g1

using the same simplifications as before in GF(2).
This shows how we break one problem (the 8-bit inverse in GF(28)) down into simpler

problems (4-bit operations in GF(24)), which can further be broken down to still simpler
problems (2-bit operations in GF(22) and bit operations in GF(2)).

4 Optimizations

There are several ways to reorganize the calculations above in order to reduce the total
operation count and hence minimize the circuitry required. Additionally, there is some
freedom in the choice of the coefficients in the minimal polynomials r(y) and s(z) to give
convenient multipliers.

10

The inverse formulas in GF(28)/GF(24) would simplify considerably if we could choose
τ = 0 or ν = 0, but neither choice gives an irreducible polynomial. We can find irreducible
polynomials with τ = 1, which is also convenient. This is better than choosing ν = 1, since
τ appears in two products in the inverse (in the polynomial basis, but even for the normal
basis τ = 1 turns out to be preferable). We can’t choose both ν = τ = 1 since then we get
the minimal polynomial of Ω and Ψ in GF(22), a subfield of GF(24). So from here on we let
τ = 1 and similarly let T = 1.

4.1 Polynomial Basis Optimizations

First we consider optimizations using polynomial bases. In GF(28)/GF(24) the only op-
eration required is the inverse. Satoh et al.[12] indicate the following steps in inverting
g = γ1y+ γ0, where we return to the ⊕,⊗ notation, and give names to intermediate results,
to clarify the subfield operations needed:

φ = γ1 ⊕ γ0

θ = [(ν ⊗ γ21)⊕ (φ⊗ γ0)]
−1

g−1 = [θ ⊗ γ1]y + [θ ⊗ φ]

(Note: in the notation of [12], our ν becomes λ and our N becomes φ.) The operations
required in the subfield GF(24)/GF(22) include an inverter, multipliers, and adders (bitwise
XOR).
The subfield inversions can be performed similarly, as suggested by [12]. So to invert

γ = Γ1z + Γ0 in GF(2
4):

Φ = Γ1 ⊕ Γ0
Θ = [(N ⊗ Γ21)⊕ (Φ⊗ Γ0)]−1

γ−1 = [Θ⊗ Γ1]z + [Θ⊗ Φ]

And in GF(22) the inverse of Γ = g1w + g0 is simply:

Γ−1 = [g1]w + [g1 ⊕ g0]

The multiplier in GF(24) given by [12] finds the product γδ = (Γ1z + Γ0)(∆1z +∆0) by
the steps

Φ = Γ0 ⊗∆0

γδ = [Φ⊕ (Γ1 ⊕ Γ0)⊗ (∆1 ⊕∆0)]z + [Φ⊕ (N ⊗ Γ1 ⊗∆1)]

Similarly in GF(22), the product Γ∆ = (g1w + g0)(d1w + d0) can be found by

f = g0 ⊗ d0
Γ∆ = [f ⊕ (g1 ⊕ g0)⊗ (d1 ⊕ d0)]w + [f ⊕ (g1 ⊗ d1)]

(where in GF(2), ⊗ means AND).

11

For further efficiency, multiplication by a known constant (e.g. ν above), which we will
call “scaling,” should use a specialized circuit instead of a generic multiplier, and the same
is true for squaring.
Scaling γ = Γ1z+Γ0 in GF(2

4) by ν = ∆1z+∆0 becomes simpler for special choices of ν,
for example, if ∆0 = 0. (It is not possible to choose ∆1 = 0, because then r(y) is reducible.)
Then

νγ = [∆1 ⊗ (Γ1 ⊕ Γ0)]z + [(N∆1)⊗ Γ1]
And choosing N = ∆−11 makes scaling by ν even simpler:

νγ = [(N−1)⊗ (Γ1 ⊕ Γ0)]z + [Γ1]
In GF(22), since N W= 0, 1 (so that s(z) = z2 + z + N is irreducible over GF(22)), then

both N and N + 1 are roots of t(w) = w2 + w + 1, and N−1 = N2 = N + 1. Depending
on which root we choose for the polynomial basis [w, 1], then either N = w or N2 = w. In
either case, since we need scalers for both N and N2, this corresponds to scalers for both w
and w2, and scaling becomes

(w)⊗ (g1w + g0) = [g1 ⊕ g0]w + [g1]
(w2)⊗ (g1w + g0) = [g0]w + [g0 ⊕ g1]

Squaring γ = Γ1z ⊕ Γ0 in GF(24) corresponds to
Φ = Γ21
γ2 = [Φ]z + [Γ20 ⊕N ⊗ Φ]

Of course, squaring Γ = g1w+ g0 in the subfield GF(2
2) can be done similarly, using further

simplifications in GF(2):

Γ2 = [g1]w + [g0 ⊕ g1]
Note that, in GF(22), every nonzero element Γ satisfies Γ3 = 1, so Γ−1 = Γ2, i.e., the GF(22)
inverter is the same as the squarer.
Another improvement comes from combining the square in GF(24) with the scaling by ν,

since it is only this combination that is required in the GF(28) inverter. Then for the choice
of ν above

ν ⊗ γ2 = ν ⊗ (Γ1z + Γ0)2
= ν ⊗ ([Γ21]z + [Γ20 ⊕N ⊗ Γ21])
= [N2 ⊗ (Γ21 ⊕ (Γ20 ⊕N ⊗ Γ21))]z + [Γ21]
= [(N2 + 1)⊗ Γ21 ⊕N2 ⊗ Γ20]z + [Γ21]
= [N ⊗ Γ21 ⊕N2 ⊗ Γ20]z + [Γ21]

In the subfield GF(22), combining squaring with scaling by w gives

(w)⊗ Γ2 = (w)⊗ (g1w + g0)2
= (w)⊗ ([g1]w + [g0 ⊕ g1])
= [g1 ⊕ (g0 ⊕ g1)]w + [g1]
= [g0]w + [g1]

12

so this combination is free (being just a swap of two bits)! This suggests that if we choose
w = N , then

ν ⊗ γ2 = [{N ⊗ Γ21}⊕N ⊗ {N ⊗ Γ20}]z + [N2 ⊗ {N ⊗ Γ21}]
performs this combined operation with one addition and two scalings in the subfield, since
the operations in {} are free. Or, if instead we choose w = N2 then

ν ⊗ γ2 = [N2 ⊗ {N2 ⊗ Γ21}⊕ {N2 ⊗ Γ20}]z + [N ⊗ {N2 ⊗ Γ21}]
again requiring only one addition and two scalings.
Also, combining the multiplication in GF(22) with scaling by N gives a small improve-

ment; this combination appears in the GF(24) multiplier. If N = w, for example, the scaled
product NΓ∆ = w(g1w + g0)(d1w + d0) becomes

f = (g1 ⊕ g0)⊗ (d1 ⊕ d0)
NΓ∆ = [f ⊕ (g1 ⊗ d1)]w + [f ⊕ (g0 ⊗ d0)]

so the scaling is “free.”

4.2 Normal Basis Optimizations

Analogous optimizations are available using normal bases, although the details change. For
instance, in GF(22) with a normal basis [W 2,W] the squaring operation is free:

(g1W
2 + g0W)

2 = g0W
2 + g1W

And while it is still convenient to choose τ = 1 and T = 1, different choices for ν and N can
make the combination of squaring and scaling in GF(24) efficient. Here scaling the square
of γ = Γ1Z

4 + Γ0Z by ν = ∆1Z
4 +∆0Z gives

ν ⊗ γ2 = ν ⊗ {[Γ21 ⊕N ⊗ (Γ21 ⊕ Γ20)]Z4 + [Γ20 ⊕N ⊗ (Γ21 + Γ20)]Z}
= [∆1 ⊗ (Γ21 ⊕N ⊗ (Γ21 ⊕ Γ20)) +N(∆1 +∆0)⊗ (Γ21 ⊕ Γ20)]Z4

+ [∆0 ⊗ (Γ20 ⊕N ⊗ (Γ21 ⊕ Γ20)) +N(∆1 +∆0)⊗ (Γ21 ⊕ Γ20)]Z
= [(∆1 +N∆0)⊗ Γ21 ⊕ (N∆0)⊗ Γ20]Z4 + [(N∆1)⊗ Γ21 ⊕ (∆0 +N∆1)⊗ Γ20]Z

This can be made more efficient by choosing, for example, ∆1 = N∆0, giving

ν ⊗ γ2 = [(N∆0)⊗ Γ20]Z4 + [(N∆1)⊗ Γ21 ⊕ (∆0 +N∆1)⊗ Γ20]Z
= [(N∆0)⊗ Γ20]Z4 + [(N2∆0)⊗ Γ21 ⊕ ((N2 + 1)∆0)⊗ Γ20]Z
= [(N∆0)⊗ Γ20]Z4 + [(N2∆0)⊗ Γ21 ⊕ (N∆0)⊗ Γ20]Z

which again requires only two scalings and an addition (note the common sub-expression),
since squaring is free. Also, it is possible to choose ∆0 = N

−1 to save one scaling.
The top level inversion, of g = γ1Y

16 + γ0Y in GF(2
8), can be done by

θ = [{ν ⊗ (γ1 ⊕ γ0)
2}⊕ (γ1 ⊗ γ0)]

−1

g−1 = [θ ⊗ γ0]Y
16 + [θ ⊗ γ1]Y

13

Similarly, γ = Γ1Z
4 + Γ0Z in GF(2

4) is inverted by

Θ = [N ⊗ (Γ1 ⊕ Γ0)2 ⊕ (Γ1 ⊗ Γ0)]−1
γ−1 = [Θ⊗ Γ0]Z4 + [Θ⊗ Γ1]Z

where in GF(22) inversion is the same as squaring, which is free.
In GF(24) the product γδ = (Γ1Z

4 + Γ0Z)(∆1Z
4 +∆0Z) is found by

Φ = N ⊗ (Γ1 ⊕ Γ0)⊗ (∆1 ⊕∆0)

γδ = [Φ⊕ (Γ1 ⊗∆1)]Z
4 + [Φ⊕ (Γ0 ⊗∆0)]Z

And in GF(22), the product Γ∆ = (g1W
2 + g0W)(d1W

2 + d0W) corresponds to

f = (g1 ⊕ g0)⊗ (d1 ⊕ d0)
Γ∆ = [f ⊕ (g1 ⊗ d1)]W 2 + [f ⊕ (g0 ⊗ d0)]W

Scaling in GF(22) is accomplished by

(W)⊗ (g1W 2 + g0W) = [g1 ⊕ g0]W 2 + [g1]W

(W 2)⊗ (g1W 2 + g0W) = [g0]W
2 + [g0 ⊕ g1]W

At this level of optimization, the smallest GF(28) inverter using normal bases turns out
to use exactly the same number of gates as the smallest polynomial version. However, this
does not account for further optimizations from common subexpressions (discussed below),
nor for the change in representation (basis) required on entering and leaving the S-box.

4.3 Mixing Basis Types

There is no reason why the three bases, for GF(28), GF(24), and GF(22), should all be
polynomial bases or all be normal bases; one is free to choose either type of basis at each
level. (Of course, one could choose other types of basis at each level, but both polynomial
and normal bases have structure that leads to efficient calculation, which is lacking in other
bases.) We have seen that the inverters in GF(28) for both types of basis require the same
number and type of operations in GF(24), and similarly for the inverters in GF(24). The
multipliers also use the same operations for both types of bases; the same is true for the
scalers in GF(22).
In GF(22), squaring is free with a normal basis, while the combination w⊗Γ2 is free with

a polynomial basis. Since the GF(24) inverter needs one GF(22) inverter (same as squaring)
and one combo N ⊗ Γ2, then as long as N = w this gives no preference for either type of
basis.
The main differences then are in the combined squaring-scaling operation required by

the GF(28) inverters: ν ⊗ γ2. The details vary for the calculations this operation requires in
GF(22), depending on the basis types and the relations between ν, N , z, and w. The tables
below summarize all the different cases.

14

Coefficients: Polynomial GF(24) Basis XOR Gates
ν = ν ⊗ (Az +B)2 = poly. GF(22) norm.
Cz +D [(CN2 +D)A2 + CB2]z + [(C +D)NA2 +DB2] w = N w = N2 GF(22)

N 0 A2 ⊕N ⊗ B2 N2 ⊗ A2 4 5 4
N2 0 N ⊗ A2 ⊕N2 ⊗ B2 A2 4 5 4
N N N2 ⊗ A2 ⊕N ⊗ B2 N ⊗ B2 3 4 4
N2 N2 A2 ⊕N2 ⊗ B2 N2 ⊗ B2 4 4 3
N 1 N ⊗ B2 (A⊕B)2 3 5 3
N2 N N2 ⊗B2 N ⊗ (A⊕B)2 3 4 4
N N2 N ⊗ (A⊕ B)2 N ⊗ (A⊕B)2 ⊕B2 5 7 5
N2 1 N2 ⊗ (A⊕ B)2 N2 ⊗ (A⊕ B)2 ⊕N ⊗B2 5 6 6

Coefficients: Normal GF(24) Basis XOR Gates
ν = ν ⊗ (Az4 +Bz)2 = poly. GF(22) norm.

Cz4 +Dz [CA2+DN(A2+B2)]z4 + [CN(A2+B2)+DB2]z w = N w = N2 GF(22)

N 0 N ⊗A2 N2 ⊗ (A⊕B)2 3 4 4
0 N N2 ⊗ (A⊕ B)2 N ⊗B2 3 4 4
N2 0 N2 ⊗ A2 (A⊕ B)2 4 4 3
0 N2 (A⊕ B)2 N2 ⊗ B2 4 4 3
N 1 N ⊗B2 N2 ⊗ A2 ⊕N ⊗B2 3 4 4
1 N N ⊗A2 ⊕N2 ⊗B2 N ⊗A2 3 4 4
N2 1 A2 ⊕N ⊗ B2 A2 3 5 3
1 N2 B2 N ⊗ A2 ⊕B2 3 5 3

The first table is for a polynomial basis in GF(24); the second is for a normal basis. The
first two columns show the coefficients of ν in terms of N , which depends on the bases for
GF(24) and GF(22). (All eight possibilities are shown for both tables, although, due to the
symmetry of normal bases, the second table essentially has only four cases, each shown two
ways.) The next two columns show the coefficients of ν⊗γ2 that need to be calculated; each is
expressed in a form to suggest a compact calculation. The last three columns show the total
number of XOR gates required for: a polynomial basis for GF(22) with w = N ; a polynomial
basis for GF(22) with w = N2; or a normal basis for GF(22). Note that addition in GF(22)
uses two XOR’s while scaling uses one. These numbers incorporate taking advantage of
whichever calculation is free in the particular GF(22) basis, and include this adjustment: for
a polynomial basis in GF(22) with w = N2, add one since the N ⊗Γ2 in the inverter requires
a scaling.
Altogether, 85 XOR’s and 36 AND’s are needed for the rest of the calculation, so the

inverter could include from 88 to 92 XOR’s (excluding common subexpression optimizations
below), depending on basis choice. This does not account for the gates needed to change
between representations (bases) on entering and exiting the S-box. Since there is only a
difference of 4 XOR’s between the smallest and largest inverter that incorporate the above
optimizations, the change of basis can play an important role.

15

4.4 Common Subexpressions

A further level of optimization comes from finding subexpressions that appear more than
once in the above hierarchical view of the inverter. Each of these common subexpressions
need only be computed once, thus reducing the size of the inverter.
As [12] mentions, one place this occurs is when the same factor is input to two different

multipliers. Each multiplier needs the sum of the high and low halves of each factor, so
a shared factor saves one addition in the subfield. For example, a 2-bit factor shared by
two GF(22) multipliers saves one XOR. Moreover, since each GF(24) multiplier includes
three GF(22) multipliers, then a shared 4-bit factor implies three corresponding shared 2-bit
factors. So each shared 4-bit factor saves five XOR’s (one 2-bit addition and three 1-bit
additions).
The polynomial-basis inverters for GF(28) and GF(24) each have two different factors

that are each shared between two multipliers (which appeared as φ and θ in GF(24), Φ and
Θ in GF(22)). However, each of the corresponding normal-basis inverters share all three
factors among the three multipliers (called θ, γ1 and γ0 in GF(2

4), and Θ, Γ1 and Γ0 in
GF(22)). This gives a significant advantage to using a normal basis in GF(28), since the
additional shared factor in the GF(28) inverter saves five more XOR’s.
Another place to look is in the GF(24) square-scale combination. It turns out that, of

the 36 variations in the tables (page 15), a repeated sum of two bits can be found in 10 cases
(all with polynomial GF(24) bases), saving one XOR.
A more subtle saving occurs in the GF(24) inverter. There are essentially 6 versions,

depending on the types of basis for GF(24) and GF(22), and for a polynomial GF(22) basis
whether N = w or N = w2. Each case can be improved by at least one XOR, and in
two cases, by two XOR’s. These improvements all involve bit sums computed for common
factors being combined with some other operations, but the details vary from case to case.
For example, with both bases polynomial, combining the GF(22) inverter with finding the
sum of its output bits (it’s a shared factor) saves one XOR. Or for both normal bases,
combining the sum of the high and low inputs and the following square-scale operation with
the bit sums of the high and low inputs (shared factors) again saves one XOR.
The last optimization occurs in the GF(28) inverter, combining the bit sums for shared

input factors with parts of the square-scale operation. Again the details vary with the
specifics of the basis choices. All 36 versions with a normal GF(28) basis were examined (the
others have a 5 XOR handicap), and also the all-polynomial version corresponding to the
bases in [12], for comparison. The resulting improvement ranges from three to five XOR’s:
for most cases (23) it was three, for a dozen cases it was four, and it was five in only two
cases.
While all these additional optimizations apply differently to the various basis choices,

they tend to make the various versions more similar in size, with one exception: the extra
shared factor in the normal GF(28) inverter gives an advantage of five XOR’s. Hence those
cases using a polynomial basis for GF(28) are effectively uncompetitive. The smallest (prior
to these optimizations) inverter saves 15 + 3 XOR’s in shared factors, 1 more in the GF(24)
inverter, and 3 more in the GF(28) inverter, giving a total size of 66 XOR’s and 36 AND’s.
(The bases of [12] give an inverter with 73 XOR’s.)
The following tables show the size of the inverter when all of these optimizations have

16

been applied; in addition to the number of XOR’s shown, each inverter includes 36 AND’s.

Poly. XOR Gates
ν = poly. GF(22) norm.
Cz +D w = N w = N2 GF(22)

N 0 67 67 67
N2 0 67 67 67
N N 67 67 67
N2 N2 67 67 67
N 1 67 67 67
N2 N 67 67 67
N N2 68 68 67
N2 1 67 68 67

Norm. XOR Gates
ν = poly. GF(22) norm.

Cz4 +Dz w = N w = N2 GF(22)

N 0 66 66 66
0 N 66 66 66
N2 0 66 66 66
0 N2 66 66 66
N 1 66 66 66
1 N 66 66 66
N2 1 66 66 66
1 N2 66 66 66

The first table is for a polynomial GF(24) basis, the second for a normal GF(24) basis; both
tables assume a normal basis for GF(28), for the extra shared 4-bit factor. It is apparent that
these low-level optimizations tend to even out the differences expected from the square-scale
operation (compare with the tables on page 15). Using a polynomial GF(24) basis costs
at least one XOR (one less shared 2-bit factor), and a few cases cost one more. Because
the variation in the inverter size is so small, the cost of changing between the standard
representation and the S-box basis will be decisive.

5 Choices of Representation

This algorithm involves several related representations, or isomorphisms, of Galois Fields.
First, GF(28) is considered as the set of bytes with the polynomial basis implied by the
irreducible polynomial q(x) = x8+x4+x3+x+1. Then GF(28)/GF(24) is also considered as
polynomials with coefficients in GF(24), based on the irreducible polynomial r(y) = y2+y+ν.
Similarly, GF(24)/GF(22) uses a basis implied by the irreducible polynomial s(z) = z2+z+N ,
and GF(22)/GF(2) uses a root of t(w) = w2 + w + 1. So each byte of information has two
forms: the standard AES form (polynomial basis in 8 powers of A), and the subfield form
in GF(28)/GF(24) as a pair of 4-bit coefficients, each being (in GF(24)/GF(22)) a pair of
two-bit coefficients, which in turn are coefficients in the basis for GF(22).
One approach to using these two forms, as suggested by [11], is to convert each byte of the

input block once, and do all of the AES algorithm in the new form, only converting back at
the end of all the rounds. Since all the arithmetic in the AES algorithm is Galois arithmetic,
this would work fine, provided the key was appropriately converted as well. However, the
MixColumns step involves multiplying by constants that are simple in the standard basis (2
and 3, or A and A+1), but this simplicity is lost in the subfield basis. For example, scaling
by 2 in the standard basis takes only 3 XOR’s; the most efficient normal-basis version of
this scaling requires 18 XOR’s. Similar concerns arise in the inverse of MixColumns, used in
decryption. This extra complication more than offsets the savings from delaying the basis
change back to standard. Then, as in [12], the affine transformation can be combined with
the basis change (see below). For these reasons, it is most efficient to change into the subfield
basis on entering the S-box and to change back again on leaving it.

17

Each change of basis is in effect multiplication by an 8 × 8 bit matrix. Letting X refer
to the matrix that converts from the subfield basis to the standard basis, then to compute
the S-box function of a given byte, first we do a bit-matrix multiply by X−1 to change into
the subfield basis, then calculate the Galois inverse by subfield arithmetic, then change basis
back again by another bit-matrix multiply, by X. But this is followed directly by the affine
transformation (substep 2), which includes another bit-matrix multiply, by the constant
matrix M . (This can be regarded another change of basis, since M is invertible.) So we can
combine the matrices into the product MX to save one bit-matrix multiply, as pointed out
by [12]. Then adding the constant b completes the S-box function.
The inverse S-box function is similar, except the XOR with constant b comes first, followed

by multiplication by the bit matrix (MX)−1. Then after finding the inverse, we convert back
to the standard basis through multiplication by the matrix X.
For each such constant-matrix multiply, the gate count can be reduced by “factoring out”

combinations of input bits that are shared between different output bits (rows). One way to
do this is known as the “greedy algorithm,” where at each stage one picks the combination of
two input bits that is shared by the most output bits; that combination is then pre-computed
in a single (XOR) gate, which output effectively becomes a new input to the remaining matrix
multiply. The greedy algorithm is straightforward to implement, and generally gives good
results.
But the greedy algorithm may not find the best result. We used a brute-force “tree

search” approach to finding the optimal factoring. At each stage, each possible choice for
factoring out a bit combination was tried, and the next stage examined recursively. Actually,
some “pruning” of the tree is possible, when the bit-pair choice in the current stage is
independent of that in the calling stage and had been checked previously. Appendix C gives
the C program.
This method is guaranteed to find the minimal number of gates; the drawback is that

one cannot tell how long it will take, due to the combinatorial complexity of the algorithm.
For example, running on an Intel Xeon processor under Linux (without “pruning”), one
particular 8×8 matrix took over 2 weeks, while many others took a fraction of a microsecond.
(However, many of the matrices that took very long times had already been ruled poor
candidates by the greedy algorithm, and could have been skipped.)
Using the “merged” S-box and inverse S-box of [12] complicates this picture, but reduces

the hardware required overall when both encryption and decryption are needed. There, a
block containing a single GF(28) inverter can be used to compute either the S-box function
or its inverse, depending on a selector signal. Given an input byte a, both X−1 a and
(MX)−1 (a+b) are computed, with the first selected for encryption, the second for decryption.
That selection is input into the inverter, and from the output byte c, both (MX) c + b and
X c are computed; again the first is selected for encryption, the second for decryption.
With this merged approach, these basis-change matrix pairs can be optimized together,

considering X−1 and (MX)−1 together as a 16× 8 matrix, and similarly (MX) and X, each
pair taking one byte as input and giving two bytes as output. (Then (MX)−1 (a + b) must
be computed as (MX)−1 a+ [(MX)−1 b].) Combining in this way allows more commonality
among rows (16 instead of 8) and so yields a more compact “factored” form. Of course, this
also means the “tree search” optimizer has a much bigger task and longer run time. (Note:
this is what actually induced our development of the “pruning” strategy, which typically

18

gives a speedup factor of 10 to 20 times faster, enough to make full optimization feasible.)
The additive constant b of the affine transformation (or (MX)−1 b for decryption), being

an exclusive-OR with a known constant, just requires negating specific bits of the output
of the basis change. (Actually, since the multiplexors we use are themselves negating, it is
the bits other than those in b that need negating first.) In most cases, this can be done by
replacing an XOR by an XNOR (not-exclusive-or, which really should be called NXOR) in
the basis change, which is “free” since both XOR and XNOR are the same size in the CMOS
library we consider. But in some cases, such as when an output bit is given by a single input
bit, the negation must be done explicitly with a NOT gate.
At this time, not all of the matrices for all of the cases considered below have been fully

optimized, but the data so far indicate how full optimization can improve on the greedy
algorithm. For the architecture with separate encryptor and decryptor, the top 25% of cases
(based on greedy algorithm estimates) have been fully optimized: of 952 matrices (8 × 8)
optimized, 346 (36%) were improved by at least one XOR, and of those, 45 (13% of improved
ones) were improved by two XOR’s, and 2 (0.6% of improved ones) were improved by three
XOR’s. For the merged architecture, the top 14 cases have been optimized: of 36 matrices
(16 × 8) optimized, 17 (47%) were improved by one XOR, 6 (17%) were improved by two
XOR’s, and 5 (14%) were improved by three XOR’s, so altogether 78% were improved.
We considered all of the subfield polynomial and normal bases that had a trace of unity.

Over GF(24), there are eight choices for ν that make r(y) = y2 + y + ν irreducible, namely
the four elements with the minimal polynomial (over GF(2)) x4 + x3 + 1, and the four
elements with the minimal polynomial x4 + x3 + x2 + x + 1. There are only two choices
for N that make the polynomial s(z) = z2 + z + N irreducible over GF(22), namely the
two roots of t(w) = w2 + w + 1. Each of these polynomials r(y), s(z), and t(w) has two
distinct roots, and for a polynomial basis we may choose either, or for a normal basis we
use both. So including the choices for ν and N and the type of basis at each level, there are
(8× 3)× (2× 3)× (1× 3) = 432 possible cases. (Note: the basis used in [12] corresponds to
case number 252 in Appendix E.)
The most compact case was judged to be the one giving the least number of gates for the

merged S-box architecture of [12], where a single inverter is shared for both encryption and
decryption, using merged bit matrices X−1 and (MX)−1 before the inverter, and (MX) and
X after. The total gates include the two optimized 16× 8 matrices, the two additions of the
constant b, one inverter, and also the multiplexors. As it happens, the case giving the most
compact circuit for this architecture also gives the most compact separate encryptor (with
just X−1, inverter, (MX), and b), and gives a separate decryptor that is one XOR bigger
than the smallest.
(The envelope, please...)
The winner is case number 4 in the Appendix E table of all the cases. Here we will

specify the relevant Galois elements in three forms: by our naming convention summarized
in table D.3, by decimal and by hexadecimal numbers (in C notation), which refer to the
representation in the standard basis (in powers of A). This case uses normal bases for all
subfields. For GF(28)/GF(24), the norm ν = β8 = 236 = 0xEC, and y = d = 255 = 0xFF,
so the basis is [d16, d] = [0xFE,0xFF] (recall that for each of the normal bases, the sum of
the two elements is the trace, which is unity). For GF(24)/GF(22), N = Ω2 = 188 = 0xBC
and z = α2 = 92 = 0x5C, so the basis is [α8,α2] = [0x5D,0x5C]. And for GF(22), w = Ω =

19

189 = 0xBD, so the basis is [Ω2,Ω] = [0xBC,0xBD]. For this case, ν = N2z, i.e., C = 0 and
D = N2 in the table above, so this inverter is the smallest, consisting of 66 XOR’s and 36
NAND’s. (Note: because each AND output bit is combined with another AND output in a
following XOR, then the AND gates can be replaced by NAND gates, which are smaller in
the library considered.) The optimized versions of the merged basis change matrices have
the following numbers of XOR’s/XNOR’s: [X−1&(MX)−1] = 20, [(MX)&X] = 18. Also,
the additive constants of the affine transformation require 2 NOT’s. For separate encryptor
and decryptor, the optimized matrices have these sizes: X−1 = 13, MX = 11, X = 13,
(MX)−1 = 12 (no NOT’s required).
So the complete merged S-box and inverse, including inverter, transformation matrices,

additive constant b, and multiplexors, totals 104 XOR/XNOR’s+36 NAND’s+2 NOT’s+16
MUX21I’s (where MUX21I is a 2:1 selector and inverter [13]). Using the equivalencies 1
XOR/XNOR= 7

4
NAND gates, 1 NOT= 3

4
NAND gates, and 1 MUX21I= 7

4
NAND gates

[13], this S-box is equivalent in size to 2471
2
NAND’s, an improvement of 16% over the merged

S-Box of [12] at 294 NAND’s.
If separate encryptors and decryptors are preferable, then the S-box includes the bit

matrices X−1 and MX and inverter, totaling 90 XOR’s + 36 NAND’s, with equivalent size
1931

2
NAND’s; the inverse S-box uses (MX)−1 and X and inverter, giving 91 XOR’s + 36

NAND’s, of size 1951
4
NAND’s. (If only a decryptor is needed, then one could use one of the

bases 43, 113, or 125, to get an inverse S-box of 90 XOR’s + 36 NAND’s.)
Since we have not yet fully optimized the matrices for all of the 432 possible cases, it is

conceivable that one of the other cases could turn out to be better than case 4. We have
optimized all cases whose estimated size, based on the greedy algorithm, was within 8 XOR’s
of the actual size of case 4 (104 XOR’s). So far, the best improvement in a single 16 × 8
matrix is 3 XOR’s, and the best improvement in the pair of matrices for a single case is 4
XOR’s. For some other case to be best, full optimization must improve a matrix pair, beyond
what the greedy algorithm found, by at least 9 XOR’s. We consider this highly unlikely, and
so are confident that case 4 is indeed the best of all 432 cases.

6 Implementation Details

For the change of basis matrix, we want to change an element g of GF(28), the standard
AES representation as a byte of 8 bits gi ∈ GF(2), namely g7g6g5g4g3g2g1g0, meaning g7A7+
g6A

6 + g5A
5 + g4A

4 + g3A
3 + g2A

2 + g1A+ g0, into the new basis. Then in GF(2
8)/GF(24),

g = γ1y
16 + γ0y, where for each element γ ∈ GF(24)/GF(22), we have γ = Γ1z

4 + Γ0z, and
each element Γ ∈ GF(22) is considered a pair of bits b1b0, meaning b1w2 + b0w. So the new
byte representation b7b6b5b4b3b2b1b0 is related to the old by

g7A
7 + g6A

6 + g5A
5 + g4A

4 + g3A
3 + g2A

2 + g1A+ g0

= [(b7w
2 + b6w)z

4 + (b5w
2 + b4w)z]y

16 + [(b3w
2 + b2w)z

4 + (b1w
2 + b0w)z]y

= b7w
2z4y16 + b6wz

4y16 + b5w
2zy16 + b4wzy

16 + b3w
2z4y + b2wz

4y + b1w
2zy + b0wzy

The relevant arithmetic in GF(28) (see Appendix D), using the standard A polynomial
basis and logarithms base B, is: y = 0xFF = B7, z = 0x5C = B34, w = 0xBD = B85,

20

y16 = B112 = 0xFE, z4 = B136 = 0x5D, w2 = B170 = 0xBC, w2z4y16 = B418 = B163 = 0x64,
wz4y16 = B333 = B78 = 0x78, w2zy16 = B316 = B61 = 0x6E, wzy16 = B231 = 0x8C, w2z4y =
B313 = B58 = 0x68, wz4y = B228 = 0x29, w2zy = B211 = 0xDE, wzy = B126 = 0x60, so
these become the columns of the basis change matrix X:

g7
g6
g5
g4
g3
g2
g1
g0


=



0 0 0 1 0 0 1 0
1 1 1 0 1 0 1 1
1 1 1 0 1 1 0 1
0 1 0 0 0 0 1 0
0 1 1 1 1 1 1 0
1 0 1 1 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0





b7
b6
b5
b4
b3
b2
b1
b0


Then the reverse change of basis is given by X−1 (modulo 2):

b7
b6
b5
b4
b3
b2
b1
b0


=



1 1 1 0 0 1 1 1
0 1 1 1 0 0 0 1
0 1 1 0 0 0 1 1
1 1 1 0 0 0 0 1
1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 1
0 1 0 0 1 1 1 1





g7
g6
g5
g4
g3
g2
g1
g0


So to compute the S-box function of a given byte, first we do a bit-matrix multiply (by

X−1) to change into the basis for GF(28)/GF(24)/GF(22), then calculate the inverse. Then
change basis back again and perform the affine transformation, through another bit-matrix
multiply by MX:

MX =



0 0 1 0 1 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
1 0 1 0 1 0 0 0
1 1 1 1 1 0 0 0
0 1 1 0 1 1 0 1
0 0 1 1 0 0 1 0
0 1 0 1 0 0 1 0


and addition of the constant b.
The inverse S-box function is similar, except the XOR with constant b comes first. Then

21

comes multiplication by the bit matrix

(MX)−1 =



1 0 0 1 0 0 0 0
0 1 0 1 0 0 1 1
0 1 0 1 0 0 0 0
0 1 0 0 1 0 1 1
1 1 0 1 0 0 0 0
1 0 1 0 0 1 0 0
0 0 0 1 1 0 0 1
0 1 1 1 0 0 1 1


And after finding the inverse, we convert back to the polynomial basis through multiplication
by the matrix X.
The optimized versions of these matrices can be shown in product form to indicate the

factoring out of common bit combinations, as follows:

w
X−1

(MX)−1

W
=



0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0



w
I

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

W


I

0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0

w I
0 0 1 0 0 0 0 0 0 0 1

W I
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1



w
(MX)
X

W
=



0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0




I

0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0



22

X
I

0 0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0

~
I

1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0
0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0


where a horizontal line divides each matrix into two blocks, and I means an identity matrix
of appropriate size. For each matrix row, the number of 1’s, less one, is the number of
two-input XOR gates needed for that row.
The implementation of the Galois inverter has mostly been given in Section 4.2 above,

since normal bases are used at each level. There can be found the top-level inverter, the
GF(24) inverter and multiplier, the GF(22) inverter (square, i.e., bit swap), multiplier, and
scalers for both N = w2 and N2 = w. The combination of multiplication with scaling by
N = w2 in GF(22) is given by

f = g0 ⊗ d0
NΓ∆ = [f ⊕ ((g1 ⊕ g0)⊗ (d1 ⊕ d0))]w2 + [f ⊕ (g1 ⊗ d1)]w

The only other operation required is the square-scale operator in the normal basis GF(24),
as shown on page 15 for C = 0 and D = N2, which is

ν(Az4 +Bz)2 = [(A⊕ B)2]z4 + [N2 ⊗B2]z
where the squaring is free.
Appendix A gives a C program that implements the S-box function (and its inverse) to

illustrate the algorithm. This shows the hierarchical structure of the subfield approach, but
does not include the low-level optimizations of Section 4.4. The output is a table that can be
compared with the reference version in the file boxes-ref.dat, included in the “Reference
code in ANSI C v2.2.” link from The Rijndael Page:
http://www.esat.kuleuven.ac.be/~rijmen/rijndael/

Appendix B gives our compact implementation of the merged S-box and inverse as a
Verilog module. All the low-level optimizations of Section 4.4 are shown. These include:
pre-computing sums of high and low parts of common factors for multipliers; in the GF(28)
inverter, using the bit sums of common factors to replace some terms in the scaled square of
the sum of high and low inputs; similarly in the GF(24) inverter; and using NAND’s instead
of AND’s.
We sucessfully tested this implementation using an FPGA (though our approach is really

more appropriate for ASIC’s). Specifically, we used an SRC-6E Reconfigurable Computer,
which includes two Intel processors and two Virtex II FPGA’s. As implemented on one
FPGA, the function evaluation takes just one tick of the 100 MHz clock, the same amount
of time needed for the table look-up approach.
We also implemented a complete AES encryptor/decryptor on this same system, using

our S-box. Certain constraints (block RAM access) of this particular system prevent using
table lookup for a fully unrolled pipelined version; 160 copies of the table (16 bytes/round×10
rounds) would not fit. So for this system, our compact S-box allowed us to implement a
fully pipelined encryptor/decryptor, where in the FPGA, effectively one block is processed
for each clock tick.

23

7 Conclusion

The goal of this work is an algorithm to compute the S-box function of AES, that can be
implemented in hardware with a minimal amount of circuitry. This should save a significant
amount of chip area in ASIC hardware versions of AES. Moreover, this area savings could
allow many copies of the S-box circuit to fit on a chip, enough to “unroll” the loop of 10
rounds. This in turn would allow the AES process to be fully pipelined, increasing the rate
of throughput significantly (for non-feedback modes of encryption), on smaller chips.
This algorithm employs the multi-level representation of arithmetic in GF(28), similar to

the previous compact implementation of Satoh et al[12]. Our work shows how this approach
leads to a whole family of 432 implementations, depending on the particular isomorphism
(basis) chosen, from which we found the best one. And in factoring the transformation (basis
change) matrices for compactness, rather than rely on the greedy algorithm as in prior work,
we fully optimized the matrices, using our tree search algorithm with pruning of redundant
cases. This gave an improvement over the greedy algorithm in 78% of the (16× 8) matrices
that we optimized. Also new is the detailed description of this nested-subfield algorithm,
including specification of all constants for each choice of representation.
Our best compact implementation gives an S-box that is 16% smaller than the previously

most compact version of [12]. We have shown that none of the other 431 versions possible
with this subfield approach is as small. This compact S-box could be useful for many future
hardware implementations of AES, for a variety of security applications.

Acknowledgements

This work was supported by the National Security Agency.
Many thanks to Akashi Satoh for his patient and very helpful discussions.

References

[1] Pawel Chodowiec and Kris Gaj. Very compact FPGA implementation of the AES
algorithm. In C.D. Walter et al., editor, CHES 2003, LNCS 2779, pages 319—333, 2003.

[2] Kimmo U. Jarvinen, Matti T. Tommiska, and Jorma O. Skytta. A fully pipelined
memoryless 17.8 gbps AES128 encryptor. In FPGA 03. ACM, 2003.

[3] Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and their applications.
Cambridge, New York, 1986.

[4] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-
Holland, New York, 1977.

[5] Sumio Morioka and Akashi Satoh. A 10 Gbps full-AES crypto design with a twisted-
BDD S-box architecture. In IEEE International Conference on Computer Design. IEEE,
2002.

24

[6] Sumio Morioka and Akashi Satoh. An optimized S-box circuit arthitecture for low power
AES design. In CHES2002, LNCS 2523, pages 172—186, 2003.

[7] NIST. Commerce department announces winner of
global information security competition. press release at
http://www.nist.gov/public_affairs/releases/g00-176.htm, October 2000.

[8] NIST. Recommendation for block cipher modes of operation. Technical Report SP
800-38A, National Institute of Standards and Technology (NIST), December 2001.

[9] NIST. Specification for the ADVANCED ENCRYPTION STANDARD (AES). Tech-
nical Report FIPS PUB 197, National Institute of Standards and Technology (NIST),
November 2001.

[10] Vincent Rijmen. Efficient implementation of the Rijndael S-box. available at
http://www.esat.kuleuven.ac.be/~rijmen/rijndael/sbox.pdf.

[11] Atri Rudra, Pradeep K. Dubey, Charanjit S. Jutla, Vijay Kumar, Josyula R. Rao,
and Pankaj Rohatgi. Efficient Rijndael encryption implementation with composite field
arithmetic. In CHES2001, LNCS 2162, pages 171—184, 2001.

[12] A. Satoh, S. Morioka, K. Takano, and Seiji Munetoh. A compact Rijndael hardware
architecture with S-box optimization. In Advances in Cryptology - ASIACRYPT 2001,
LNCS 2248, pages 239—254, 2001.

[13] Akashi Satoh. personal communication, July 2004.

[14] Nicholas Weaver and John Wawrzynek. High performance, com-
pact AES implementations in Xilinx FPGAs. available at
http://www.cs.berkeley.edu/~nweaver/papers/AES_in_FPGAs.pdf, September
2002.

[15] Johannes Wolkerstorfer, Elisabeth Oswald, and Mario Lamberger. An ASIC implemen-
tation of the AES Sboxes. In CT-RSA 2002, LNCS 2271, pages 67—78, 2002.

25

A S-box Algorithm in C

/* sbox.c

*

* by: David Canright

*

* illustrates compact implementation of AES S-box via subfield operations

* case # 4 : [d^16, d], [alpha^8, alpha^2], [Omega^2, Omega]

* nu = beta^8 = N^2*alpha^2, N = w^2

*/

#include <stdio.h>

#include <sys/types.h>

/* to convert between polynomial (A^7...1) basis A & normal basis X */

/* or to basis S which incorporates bit matrix of Sbox */

static int

A2X[8] = {0x98, 0xF3, 0xF2, 0x48, 0x09, 0x81, 0xA9, 0xFF},

X2A[8] = {0x64, 0x78, 0x6E, 0x8C, 0x68, 0x29, 0xDE, 0x60},

X2S[8] = {0x58, 0x2D, 0x9E, 0x0B, 0xDC, 0x04, 0x03, 0x24},

S2X[8] = {0x8C, 0x79, 0x05, 0xEB, 0x12, 0x04, 0x51, 0x53};

/* multiply in GF(2^2), using normal basis (Omega^2,Omega) */

int G4_mul(int x, int y) {

int a, b, c, d, e, p, q;

a = (x & 0x2) >> 1; b = (x & 0x1);

c = (y & 0x2) >> 1; d = (y & 0x1);

e = (a ^ b) & (c ^ d);

p = (a & c) ^ e;

q = (b & d) ^ e;

return ((p<<1) | q);

}

/* scale by N = Omega^2 in GF(2^2), using normal basis (Omega^2,Omega) */

int G4_scl_N(int x) {

int a, b, p, q;

a = (x & 0x2) >> 1; b = (x & 0x1);

p = b;

q = a ^ b;

return ((p<<1) | q);

}

/* scale by N^2 = Omega in GF(2^2), using normal basis (Omega^2,Omega) */

26

int G4_scl_N2(int x) {

int a, b, p, q;

a = (x & 0x2) >> 1; b = (x & 0x1);

p = a ^ b;

q = a;

return ((p<<1) | q);

}

/* square in GF(2^2), using normal basis (Omega^2,Omega) */

/* NOTE: inverse is identical */

int G4_sq(int x) {

int a, b;

a = (x & 0x2) >> 1; b = (x & 0x1);

return ((b<<1) | a);

}

/* multiply in GF(2^4), using normal basis (alpha^8,alpha^2) */

int G16_mul(int x, int y) {

int a, b, c, d, e, p, q;

a = (x & 0xC) >> 2; b = (x & 0x3);

c = (y & 0xC) >> 2; d = (y & 0x3);

e = G4_mul(a ^ b, c ^ d);

e = G4_scl_N(e);

p = G4_mul(a, c) ^ e;

q = G4_mul(b, d) ^ e;

return ((p<<2) | q);

}

/* square & scale by nu in GF(2^4)/GF(2^2), normal basis (alpha^8,alpha^2) */

/* nu = beta^8 = N^2*alpha^2, N = w^2 */

int G16_sq_scl(int x) {

int a, b, p, q;

a = (x & 0xC) >> 2; b = (x & 0x3);

p = G4_sq(a ^ b);

q = G4_scl_N2(G4_sq(b));

return ((p<<2) | q);

}

/* inverse in GF(2^4), using normal basis (alpha^8,alpha^2) */

int G16_inv(int x) {

int a, b, c, d, e, p, q;

27

a = (x & 0xC) >> 2; b = (x & 0x3);

c = G4_scl_N(G4_sq(a ^ b));

d = G4_mul(a, b);

e = G4_sq(c ^ d); // really inverse, but same as square

p = G4_mul(e, b);

q = G4_mul(e, a);

return ((p<<2) | q);

}

/* inverse in GF(2^8), using normal basis (d^16,d) */

int G256_inv(int x) {

int a, b, c, d, e, p, q;

a = (x & 0xF0) >> 4; b = (x & 0x0F);

c = G16_sq_scl(a ^ b);

d = G16_mul(a, b);

e = G16_inv(c ^ d);

p = G16_mul(e, b);

q = G16_mul(e, a);

return ((p<<4) | q);

}

/* convert to new basis in GF(2^8) */

/* i.e., bit matrix multiply */

int G256_newbasis(int x, int b[]) {

int i, y = 0;

for (i=7; i >= 0; i--) {

if (x & 1) y ^= b[i];

x >>= 1;

}

return (y);

}

/* find Sbox of n in GF(2^8) mod POLY */

int Sbox(int n) {

int t;

t = G256_newbasis(n, A2X);

t = G256_inv(t);

t = G256_newbasis(t, X2S);

return (t ^ 0x63);

}

28

/* find inverse Sbox of n in GF(2^8) mod POLY */

int iSbox(int n) {

int t;

t = G256_newbasis(n ^ 0x63, S2X);

t = G256_inv(t);

t = G256_newbasis(t, X2A);

return (t);

}

/* compute tables of Sbox & its inverse; print ’em out */

int main () {

int Sbox_tbl[256], iSbox_tbl[256], i, j;

for (i = 0; i < 256; i++) {

Sbox_tbl[i] = Sbox(i);

iSbox_tbl[i] = iSbox(i);

}

printf ("char S[256] = {\n");

for (i = 0; i < 16; i++) {

for (j = 0; j < 16; j++) {

printf ("%3d, ", Sbox_tbl[i*16+j]);

}

printf ("\n");

}

printf ("};\n\n");

printf ("char Si[256] = {\n");

for (i = 0; i < 16; i++) {

for (j = 0; j < 16; j++) {

printf ("%3d, ", iSbox_tbl[i*16+j]);

}

printf ("\n");

}

printf ("};\n\n");

return(0);

}

29

B S-box Algorithm in Verilog

/* S-box using all normal bases */

/* case # 4 : [d^16, d], [alpha^8, alpha^2], [Omega^2, Omega] */

/* beta^8 = N^2*alpha^2, N = w^2 */

/* square in GF(2^2), using normal basis [Omega^2,Omega] */

/* inverse is the same as square in GF(2^2), using any normal basis */

module GF_SQ_2 (A, Q);

input [1:0] A;

output [1:0] Q;

assign Q = { A[0], A[1] };

endmodule

/* scale by w = Omega in GF(2^2), using normal basis [Omega^2,Omega] */

module GF_SCLW_2 (A, Q);

input [1:0] A;

output [1:0] Q;

assign Q = { (A[1] ^ A[0]), A[1] };

endmodule

/* scale by w^2 = Omega^2 in GF(2^2), using normal basis [Omega^2,Omega] */

module GF_SCLW2_2 (A, Q);

input [1:0] A;

output [1:0] Q;

assign Q = { A[0], (A[1] ^ A[0]) };

endmodule

/* multiply in GF(2^2), shared factors, using normal basis [Omega^2,Omega] */

module GF_MULS_2 (A, ab, B, cd, Q);

input [1:0] A;

input ab;

input [1:0] B;

input cd;

output [1:0] Q;

wire m0, m1, ms;

nand n0(m0, A[0], B[0]);

nand n1(m1, A[1], B[1]);

nand ns(ms, ab, cd);

assign Q = { m1 ^ ms, m0 ^ ms };

endmodule

30

/* multiply & scale by N in GF(2^2), shared factors, basis [Omega^2,Omega] */

module GF_MULS_SCL_2 (A, ab, B, cd, Q);

input [1:0] A;

input ab;

input [1:0] B;

input cd;

output [1:0] Q;

wire m0, m1, ms;

nand n0(m0, A[0], B[0]);

nand n1(m1, A[1], B[1]);

nand ns(ms, ab, cd);

assign Q = { ms ^ m0, m1 ^ m0 };

endmodule

/* inverse in GF(2^4)/GF(2^2), using normal basis [alpha^8, alpha^2] */

module GF_INV_4 (A, Q);

input [3:0] A;

output [3:0] Q;

wire [1:0] a, b, ab, ab2N, d, p, q;

wire sa, sb, sd; /* for shared factors in multipliers */

assign a = A[3:2];

assign b = A[1:0];

assign sa = a[1] ^ a[0];

assign sb = b[1] ^ b[0];

GF_MULS_2 abmul(a, sa, b, sb, ab);

/* optimize this section as shown below

GF_SQ_2 absq((a ^ b), ab2);

GF_SCLW2_2 absclN(ab2, ab2N);

*/

assign ab2N = { a[1] ^ b[1], sa ^ sb };

/* end of optimization */

GF_SQ_2 dinv((ab ^ ab2N), d);

assign sd = d[1] ^ d[0];

GF_MULS_2 pmul(d, sd, b, sb, p);

GF_MULS_2 qmul(d, sd, a, sa, q);

assign Q = { p, q };

endmodule

/* square & scale by nu in GF(2^4)/GF(2^2), normal basis [alpha^8, alpha^2] */

/* nu = beta^8 = N^2*alpha^2, N = w^2 */

module GF_SQ_SCL_4 (A, Q);

input [3:0] A;

31

output [3:0] Q;

wire [1:0] a, b, ab2, b2, b2N2;

assign a = A[3:2];

assign b = A[1:0];

GF_SQ_2 absq(a ^ b,ab2);

GF_SQ_2 bsq(b,b2);

GF_SCLW_2 bmulN2(b2,b2N2);

assign Q = { ab2, b2N2 };

endmodule

/* multiply in GF(2^4)/GF(2^2), shared factors, basis [alpha^8, alpha^2] */

module GF_MULS_4 (A, a, Al, Ah, aa, B, b, Bl, Bh, bb, Q);

input [3:0] A;

input [1:0] a;

input Al;

input Ah;

input aa;

input [3:0] B;

input [1:0] b;

input Bl;

input Bh;

input bb;

output [3:0] Q;

wire [1:0] ph, pl, ps, p;

wire t;

GF_MULS_2 himul(A[3:2], Ah, B[3:2], Bh, ph);

GF_MULS_2 lomul(A[1:0], Al, B[1:0], Bl, pl);

GF_MULS_SCL_2 summul(a, aa, b, bb, p);

assign Q = { (ph ^ p), (pl ^ p) };

endmodule

/* inverse in GF(2^8)/GF(2^4), using normal basis [d^16, d] */

module GF_INV_8 (A, Q);

input [7:0] A;

output [7:0] Q;

wire [3:0] a, b, ab, ab2, d, p, q;

wire [1:0] sa, sb, sd, t; /* for shared factors in multipliers */

wire al, ah, aa, bl, bh, bb, dl, dh, dd; /* for shared factors */

assign a = A[7:4];

assign b = A[3:0];

assign sa = a[3:2] ^ a[1:0];

assign sb = b[3:2] ^ b[1:0];

32

assign al = a[1] ^ a[0];

assign ah = a[3] ^ a[2];

assign aa = sa[1] ^ sa[0];

assign bl = b[1] ^ b[0];

assign bh = b[3] ^ b[2];

assign bb = sb[1] ^ sb[0];

GF_MULS_4 abmul(a, sa, al, ah, aa, b, sb, bl, bh, bb, ab);

/* optimize this section as shown below

GF_SQ_SCL_4 absq((a ^ b), ab2);

*/

assign t = sa ^ sb;

assign ab2 = { t[0], t[1], al ^ bl, a[0] ^ b[0] };

/* end of optimization */

GF_INV_4 dinv((ab ^ ab2), d);

assign sd = d[3:2] ^ d[1:0];

assign dl = d[1] ^ d[0];

assign dh = d[3] ^ d[2];

assign dd = sd[1] ^ sd[0];

GF_MULS_4 pmul(d, sd, dl, dh, dd, b, sb, bl, bh, bb, p);

GF_MULS_4 qmul(d, sd, dl, dh, dd, a, sa, al, ah, aa, q);

assign Q = { p, q };

endmodule

/* MUX21I is an inverting 2:1 multiplexor */

module MUX21I (A, B, s, Q);

input A;

input B;

input s;

output Q;

assign Q = ~ (s ? A : B); /* mock-up for FPGA implementation */

endmodule

/* select and invert (NOT) byte, using MUX21I */

module SELECT_NOT_8 (A, B, s, Q);

input [7:0] A;

input [7:0] B;

input s;

output [7:0] Q;

MUX21I m7(A[7],B[7],s,Q[7]);

MUX21I m6(A[6],B[6],s,Q[6]);

MUX21I m5(A[5],B[5],s,Q[5]);

MUX21I m4(A[4],B[4],s,Q[4]);

MUX21I m3(A[3],B[3],s,Q[3]);

MUX21I m2(A[2],B[2],s,Q[2]);

MUX21I m1(A[1],B[1],s,Q[1]);

33

MUX21I m0(A[0],B[0],s,Q[0]);

endmodule

/* find either Sbox or its inverse in GF(2^8), by Canright Algorithm */

module bSbox (A, encrypt, Q);

input [7:0] A;

input encrypt; /* 1 for Sbox, 0 for inverse Sbox */

output [7:0] Q;

wire [7:0] B, C, D, X, Y, Z;

wire R1, R2, R3, R4, R5, R6, R7, R8, R9;

wire T1, T2, T3, T4, T5, T6, T7, T8, T9, T10;

/* change basis from GF(2^8) to GF(2^8)/GF(2^4)/GF(2^2) */

/* combine with bit inverse matrix multiply of Sbox */

assign R1 = A[7] ^ A[5] ;

assign R2 = A[7] ~^ A[4] ;

assign R3 = A[6] ^ A[0] ;

assign R4 = A[5] ~^ R3 ;

assign R5 = A[4] ^ R4 ;

assign R6 = A[3] ^ A[0] ;

assign R7 = A[2] ^ R1 ;

assign R8 = A[1] ^ R3 ;

assign R9 = A[3] ^ R8 ;

assign B[7] = R7 ~^ R8 ;

assign B[6] = R5 ;

assign B[5] = A[1] ^ R4 ;

assign B[4] = R1 ~^ R3 ;

assign B[3] = A[1] ^ R2 ^ R6 ;

assign B[2] = ~ A[0] ;

assign B[1] = R4 ;

assign B[0] = A[2] ~^ R9 ;

assign Y[7] = R2 ;

assign Y[6] = A[4] ^ R8 ;

assign Y[5] = A[6] ^ A[4] ;

assign Y[4] = R9 ;

assign Y[3] = A[6] ~^ R2 ;

assign Y[2] = R7 ;

assign Y[1] = A[4] ^ R6 ;

assign Y[0] = A[1] ^ R5 ;

SELECT_NOT_8 sel_in(B, Y, encrypt, Z);

GF_INV_8 inv(Z, C);

/* change basis back from GF(2^8)/GF(2^4)/GF(2^2) to GF(2^8) */

assign T1 = C[7] ^ C[3] ;

assign T2 = C[6] ^ C[4] ;

assign T3 = C[6] ^ C[0] ;

34

assign T4 = C[5] ~^ C[3] ;

assign T5 = C[5] ~^ T1 ;

assign T6 = C[5] ~^ C[1] ;

assign T7 = C[4] ~^ T6 ;

assign T8 = C[2] ^ T4 ;

assign T9 = C[1] ^ T2 ;

assign T10 = T3 ^ T5 ;

assign D[7] = T4 ;

assign D[6] = T1 ;

assign D[5] = T3 ;

assign D[4] = T5 ;

assign D[3] = T2 ^ T5 ;

assign D[2] = T3 ^ T8 ;

assign D[1] = T7 ;

assign D[0] = T9 ;

assign X[7] = C[4] ~^ C[1] ;

assign X[6] = C[1] ^ T10 ;

assign X[5] = C[2] ^ T10 ;

assign X[4] = C[6] ~^ C[1] ;

assign X[3] = T8 ^ T9 ;

assign X[2] = C[7] ~^ T7 ;

assign X[1] = T6 ;

assign X[0] = ~ C[2] ;

SELECT_NOT_8 sel_out(D, X, encrypt, Q);

endmodule

/* test program: put Sbox output into register */

module Sbox_r (A, S, Si, CLK);

input [7:0] A;

output [7:0] S;

output [7:0] Si;

input CLK /* synthesis syn_noclockbuf=1 */ ;

reg [7:0] S;

reg [7:0] Si;

wire [7:0] s;

wire [7:0] si;

bSbox sbe(A,1,s);

bSbox sbd(A,0,si);

always @ (posedge CLK) begin

S <= s;

Si <= si;

end

endmodule

35

C Bit-Matrix Optimizer in C

/* bestboth.c

*

* by: David Canright

*

* for each input basis, and each of 4 transformation matrices,

* takes bit matrix and finds equivalent with minimum # of gates

* combining both input matrices, and both output matrices

* NOTE: matrix input order is: [A2X, X2A, X2S, S2X]

*

* input should have lines of the form:

hexstring num

* where hexstring contains all 4 matrices, num is an ID#, e.g.:

98F3F2480981A9FF64786E8C6829DE60582D9E0BDC0403248C7905EB12045153 4

* for which the output should be:

basis # 4:

A2X: 98F3F2480981A9FF S2X: 8C7905EB12045153

ncols = 8, gates = 42

A2Xb: 0000000000012804100810224008808001

S2Xb: 0028006200000100008800000102044010

[0,2], [0,3], [1,7], [2,10], [3,11], [4,7], [5,8], [6,10], [4,15],

ncols = 17, gates = 20

X2S: 582D9E0BDC040324 X2A: 64786E8C6829DE60

ncols = 8, gates = 38

X2Sb: 000000000000000040082480180002040100

X2Ab: 041000800021D00000000000000204080860

[0,4], [1,3], [1,7], [2,4], [2,8], [2,6], [3,13], [5,11], [6,9], [10,12],

ncols = 18, gates = 18

***bestgates 4 = 38 = 20 + 18

* which, for each matrix pair, shows the original versions (8 columns),

* the optimized versions, and a list of index pairs for precomputed XORs,

* which correspond to new columns. Also shown: # XOR gates required.

* Note: a "quick" test case is:

F1261450CA86D330C502A8BF412B3590352582D03974323C65C4836C69953380 0

*

* uses pruning algorithm to eliminate redundant cases; minimal memory copying

*/

#include <stdio.h>

#include <string.h>

#define N 8

/* gatematrix is a structure with an array of 16-bit columns,

list of indices (used in pairs), number of columns, and number of gates*/

36

typedef struct gatematrix

{ unsigned int mat[128]; char ind[256]; int n; int g; }

GateMat;

static unsigned int share[65536];

static GateMat test;

/* blockPrint prints columns and index pairs for matrix pair */

void blockPrint (GateMat *p, const char *tag1, const char *tag2)

{

int i;

printf ("%6s: ", tag1);

for (i = 0; i < p->n; i++)

printf ("%02X", (p->mat[i]) & 0XFF);

if ((p->n) > N) printf ("\n");

printf ("%6s: ", tag2);

for (i = 0; i < p->n; i++)

printf ("%02X", ((p->mat[i]) & 0XFF00) >> 8);

if ((p->n) > N) printf ("\n");

for (i = 0; i < (p->n)-N; i++)

printf (" [%1d,%1d], ", p->ind[2*i], p->ind[2*i+1]);

printf ("\n ncols = %2d, gates = %2d\n", p->n, p->g);

} /* end blockPrint */

/* copyMat copies from one to another*/

void copyMat (GateMat *p, GateMat *q)

{

int i, n;

n = q->n = p->n;

q->g = p->g;

memcpy(q->mat, p->mat, n * sizeof(unsigned int));

memcpy(q->ind, p->ind, (n - N)*2);

} /* end copyMat */

/*

* bestgates is recursive:

* takes current matrix, tries all possibilities of adding a gate

* returns best # of gates

* p points to test matrix on input, and used to store output.

* tree search is pruned if this set of columns previously tried

*/

void bestgates ()

37

{

char indb[256];

int gb, nb, ci, cj;

int i, j, n, c, g, io, jo;

int nm, np, n2, n2p, t;

gb = 1024; /* best # gates, start high */

n = test.n; g = test.g;

nm=n-1; np=n+1; n2=2*(n-N); n2p=n2+1;

if (n==N) io = jo = 0; /* if orig matrix, no "old" index pair */

else { io = (test.ind[n2-2]); jo = (test.ind[n2-1]); }

for (i=0;i<nm;i++) /* for each pair of columns */

for (j=i+1;j<n;j++) {

c = (test.mat[i]) & (test.mat[j]);

if (t=share[c]) { /* if can share a gate */

if (i<io && j!=io && j!=jo && j<nm) /* if prior, indep. pair */

continue; /* then been there, done that; skip to next j */

test.n = np;

test.g = g - t;

ci = test.mat[i]; /* save current columns */

cj = test.mat[j];

test.mat[i] ^= c; /* update to new columns */

test.mat[j] ^= c;

test.mat[n] = c;

test.ind[n2] = i;

test.ind[n2p] = j;

bestgates(); /* recurse with new matrix */

test.mat[i] = ci; /* restore current columns */

test.mat[j] = cj;

if (test.g < gb) { /* if best yet, save data */

memcpy(indb, test.ind+n2, (test.n - n)*2);

nb = test.n;

gb = test.g;

}

}

} /* end columns loop */

if (gb < 1024) { /* if improved, return best data */

memcpy(test.ind+n2, indb, (nb - n)*2);

test.n = nb;

test.g = gb;

}

/* else {printf("%3d [%2d]",n,g); fflush(stdout);} */

} /* end bestgates */

/* bestmat reconstructs best matrix */

38

void bestmat (GateMat *p)

{

int i, j, n, c;

int nm, np, n2, n2p, t;

GateMat best;

n = test.n;

p->g = test.g;

for (i=0;i<N;i++) test.mat[i] = p->mat[i];

for (n=0;n<(test.n-N);n++) {

i = test.ind[n*2];

j = test.ind[n*2+1];

c = (test.mat[i]) & (test.mat[j]);

test.mat[i] ^= c;

test.mat[j] ^= c;

test.mat[n+N] = c;

}

} /* end bestmat */

/* main */

int main(int argc, char *argv[]){

char line[256];

char name[4][4] = {"A2X", "X2S", "S2X", "X2A", };

char bname[4][5] = {"A2Xb", "X2Sb", "S2Xb", "X2Ab", };

long int i, j, k, n, nid, gt;

unsigned u;

int InitMat[32];

GateMat orig[2];

/* share[i] is initialized to 0 if # bits < 2 */

share[0] = 0;

for (i=1;i<65536;i++) {

k=0;

for (j=i&0xFFFF; j; j >>=1) k += j&1;

share[i] = k-1;

}

while (fgets(line, 256, stdin) == line) {

for (i=0; i < 32; i++) { /* read matrices, ID number */

sscanf(line+2*i, "%02X", &u);

InitMat[i] = u;

}

sscanf(line+65, "%d", &nid);

printf("\nbasis #%3d:\n", nid);

39

/* NOTE: matrix input order is: [A2X, X2A, X2S, S2X] */

for (i=0;i<8;i++) { /* combine input pair; combine output pair */

(orig[0]).mat[i] = InitMat[8*0+i] | (InitMat[8*3+i] <<8) ;

(orig[1]).mat[i] = InitMat[8*2+i] | (InitMat[8*1+i] <<8) ;

}

gt = 0;

for (k=0;k<2;k++) { /* for each matrix pair */

(orig[k]).n = 8; /* initialize # columns, # gates */

for (i=j=0; i<8; i++) j += share[(orig[k]).mat[i]];

(orig[k]).g = j - 8;

blockPrint (&(orig[k]), name[k], name[k+2]);

fflush(stdout);

copyMat(&(orig[k]), &test);

bestgates(); /* optimize */

bestmat(&(orig[k]));

blockPrint (&test, bname[k], bname[k+2]);

fflush(stdout);

gt += test.g; /* total # gates */

}

printf("***bestgates %3d = %5d =%5d +%5d\n",

nid, gt, (orig[0]).g, (orig[1]).g);

fflush(stdout);

}

return(0);

} /* end main */

40

D Tables for GF(28)

D.1 Logarithm Table

For each number in decimal, hexadecimal, and binary, gives the logarithm base B in GF(28),
using the polynomial basis from the root A of q(x) = x8+x4+x3+ x+1, where B = A+1.
(See Table D.3 for an explanation of the names.)

dec hex binary logB name

0 00 00000000 −∞ 0
1 01 00000001 0 1
2 02 00000010 25 A
3 03 00000011 1 B
4 04 00000100 50 A2

5 05 00000101 2 B2

6 06 00000110 26 C2

7 07 00000111 198 F 64

8 08 00001000 75 E64

9 09 00001001 199 D8

10 0A 00001010 27 F
11 0B 00001011 104 C8

12 0C 00001100 51 γ
13 0D 00001101 238 β
14 0E 00001110 223 b32

15 0F 00001111 3 K
16 10 00010000 100 A4

17 11 00010001 4 B4

18 12 00010010 224 d32

19 13 00010011 14 d2

20 14 00010100 52 C4

21 15 00010101 141 F 128

22 16 00010110 129 K128

23 17 00010111 239 b16

24 18 00011000 76 g4

25 19 00011001 113 J16

26 1A 00011010 8 B8

27 1B 00011011 200 A8

28 1C 00011100 248 D
29 1D 00011101 105 E8

30 1E 00011110 28 d4

31 1F 00011111 193 d64

dec hex binary logB name

32 20 00100000 125 R128

33 21 00100001 194 s64

34 22 00100010 29 j32

35 23 00100011 181 h2

36 24 00100100 249 k2

37 25 00100101 185 a64

38 26 00100110 39 f 8

39 27 00100111 106 M128

40 28 00101000 77 M16

41 29 00101001 228 f
42 2A 00101010 166 M8

43 2B 00101011 114 f 128

44 2C 00101100 154 M32

45 2D 00101101 201 f 2

46 2E 00101110 9 l
47 2F 00101111 120 T 8

48 30 00110000 101 m32

49 31 00110001 47 c16

50 32 00110010 138 N128

51 33 00110011 5 r
52 34 00110100 33 l32

53 35 00110101 15 T
54 36 00110110 225 T 32

55 37 00110111 36 l4

56 38 00111000 18 l2

57 39 00111001 240 T 16

58 3A 00111010 130 r128

59 3B 00111011 69 N64

60 3C 00111100 53 M64

61 3D 00111101 147 f 4

62 3E 00111110 218 h
63 3F 00111111 142 j16

41

dec hex binary logB name

64 40 01000000 150 E128

65 41 01000001 143 D16

66 42 01000010 219 L4

67 43 01000011 189 L64

68 44 01000100 54 F 2

69 45 01000101 208 C16

70 46 01000110 206 G16

71 47 01000111 148 H4

72 48 01001000 19 g
73 49 01001001 92 J4

74 4A 01001010 210 E16

75 4B 01001011 241 D2

76 4C 01001100 64 B64

77 4D 01001101 70 A64

78 4E 01001110 131 d128

79 4F 01001111 56 d8

80 50 01010000 102 γ2

81 51 01010001 221 β2

82 52 01010010 253 b2

83 53 01010011 48 K16

84 54 01010100 191 b64

85 55 01010101 6 K2

86 56 01010110 139 J128

87 57 01010111 98 g32

88 58 01011000 179 G4

89 59 01011001 37 H
90 5A 01011010 226 J32

91 5B 01011011 152 g8

92 5C 01011100 34 α2

93 5D 01011101 136 α8

94 5E 01011110 145 A16

95 5F 01011111 16 B16

dec hex binary logB name

96 60 01100000 126 k128

97 61 01100001 110 a16

98 62 01100010 72 l8

99 63 01100011 195 T 64

100 64 01100100 163 j4

101 65 01100101 182 h64

102 66 01100110 30 T 2

103 67 01100111 66 l64

104 68 01101000 58 j64

105 69 01101001 107 h4

106 6A 01101010 40 r8

107 6B 01101011 84 N4

108 6C 01101100 250 R
109 6D 01101101 133 s128

110 6E 01101110 61 S64

111 6F 01101111 186 n64

112 70 01110000 43 m
113 71 01110001 121 c128

114 72 01110010 10 r2

115 73 01110011 21 N
116 74 01110100 155 a4

117 75 01110101 159 k32

118 76 01110110 94 c32

119 77 01110111 202 m64

120 78 01111000 78 f16

121 79 01111001 212 M
122 7A 01111010 172 m4

123 7B 01111011 229 c2

124 7C 01111100 243 k4

125 7D 01111101 115 a128

126 7E 01111110 167 S8

127 7F 01111111 87 n8

42

dec hex binary logB name

128 80 10000000 175 R16

129 81 10000001 88 s8

130 82 10000010 168 N8

131 83 10000011 80 r16

132 84 10000100 244 S
133 85 10000101 234 n
134 86 10000110 214 h8

135 87 10000111 116 j128

136 88 10001000 79 S16

137 89 10001001 174 n16

138 8A 10001010 233 S2

139 8B 10001011 213 n2

140 8C 10001100 231 k8

141 8D 10001101 230 a
142 8E 10001110 173 h16

143 8F 10001111 232 j
144 90 10010000 44 s4

145 91 10010001 215 R8

146 92 10010010 117 n128

147 93 10010011 122 S128

148 94 10010100 235 R4

149 95 10010101 22 s2

150 96 10010110 11 s
151 97 10010111 245 R2

152 98 10011000 89 m8

153 99 10011001 203 c4

154 9A 10011010 95 R32

155 9B 10011011 176 s16

156 9C 10011100 156 f 32

157 9D 10011101 169 M2

158 9E 10011110 81 N16

159 9F 10011111 160 r32

dec hex binary logB name

160 A0 10100000 127 b128

161 A1 10100001 12 K4

162 A2 10100010 246 L
163 A3 10100011 111 L16

164 A4 10100100 23 J
165 A5 10100101 196 g64

166 A6 10100110 73 H64

167 A7 10100111 236 G
168 A8 10101000 216 F 8

169 A9 10101001 67 C64

170 AA 10101010 31 D32

171 AB 10101011 45 E
172 AC 10101100 164 H32

173 AD 10101101 118 G128

174 AE 10101110 123 L128

175 AF 10101111 183 L8

176 B0 10110000 204 γ4

177 B1 10110001 187 β4

178 B2 10110010 62 D64

179 B3 10110011 90 E2

180 B4 10110100 251 b4

181 B5 10110101 96 K32

182 B6 10110110 177 F 16

183 B7 10110111 134 C128

184 B8 10111000 59 G64

185 B9 10111001 82 H16

186 BA 10111010 161 C32

187 BB 10111011 108 F 4

188 BC 10111100 170 Ω2

189 BD 10111101 85 Ω
190 BE 10111110 41 H8

191 BF 10111111 157 G32

43

dec hex binary logB name

192 C0 11000000 151 c8

193 C1 11000001 178 m16

194 C2 11000010 135 T 128

195 C3 11000011 144 l16

196 C4 11000100 97 s32

197 C5 11000101 190 R64

198 C6 11000110 220 a32

199 C7 11000111 252 k
200 C8 11001000 188 c64

201 C9 11001001 149 m128

202 CA 11001010 207 k16

203 CB 11001011 205 a2

204 CC 11001100 55 a8

205 CD 11001101 63 k64

206 CE 11001110 91 h32

207 CF 11001111 209 j2

208 D0 11010000 83 M4

209 D1 11010001 57 f 64

210 D2 11010010 132 l128

211 D3 11010011 60 T 4

212 D4 11010100 65 r64

213 D5 11010101 162 N32

214 D6 11010110 109 h128

215 D7 11010111 71 j8

216 D8 11011000 20 r4

217 D9 11011001 42 N2

218 DA 11011010 158 S32

219 DB 11011011 93 n32

220 DC 11011100 86 m2

221 DD 11011101 242 c
222 DE 11011110 211 S4

223 DF 11011111 171 n4

dec hex binary logB name

224 E0 11100000 68 α4

225 E1 11100001 17 α
226 E2 11100010 146 H128

227 E3 11100011 217 G2

228 E4 11100100 35 A32

229 E5 11100101 32 B32

230 E6 11100110 46 J2

231 E7 11100111 137 g128

232 E8 11101000 180 E4

233 E9 11101001 124 D128

234 EA 11101010 184 J8

235 EB 11101011 38 g2

236 EC 11101100 119 β8

237 ED 11101101 153 γ8

238 EE 11101110 227 D4

239 EF 11101111 165 E32

240 F0 11110000 103 G8

241 F1 11110001 74 H2

242 F2 11110010 237 L2

243 F3 11110011 222 L32

244 F4 11110100 197 J64

245 F5 11110101 49 g16

246 F6 11110110 254 b
247 F7 11110111 24 K8

248 F8 11111000 13 C
249 F9 11111001 99 F 32

250 FA 11111010 140 A128

251 FB 11111011 128 B128

252 FC 11111100 192 K64

253 FD 11111101 247 b8

254 FE 11111110 112 d16

255 FF 11111111 7 d

44

D.2 Antilogarithm Table

Same information as previous table, but ordered by logarithm base B.

dec hex binary logB name

0 00 00000000 −∞ 0
1 01 00000001 0 1
3 03 00000011 1 B
5 05 00000101 2 B2

15 0F 00001111 3 K
17 11 00010001 4 B4

51 33 00110011 5 r
85 55 01010101 6 K2

255 FF 11111111 7 d
26 1A 00011010 8 B8

46 2E 00101110 9 l
114 72 01110010 10 r2

150 96 10010110 11 s
161 A1 10100001 12 K4

248 F8 11111000 13 C
19 13 00010011 14 d2

53 35 00110101 15 T
95 5F 01011111 16 B16

225 E1 11100001 17 α
56 38 00111000 18 l2

72 48 01001000 19 g
216 D8 11011000 20 r4

115 73 01110011 21 N
149 95 10010101 22 s2

164 A4 10100100 23 J
247 F7 11110111 24 K8

2 02 00000010 25 A
6 06 00000110 26 C2

10 0A 00001010 27 F
30 1E 00011110 28 d4

34 22 00100010 29 j32

102 66 01100110 30 T 2

dec hex binary logB name

170 AA 10101010 31 D32

229 E5 11100101 32 B32

52 34 00110100 33 l32

92 5C 01011100 34 α2

228 E4 11100100 35 A32

55 37 00110111 36 l4

89 59 01011001 37 H
235 EB 11101011 38 g2

38 26 00100110 39 f 8

106 6A 01101010 40 r8

190 BE 10111110 41 H8

217 D9 11011001 42 N2

112 70 01110000 43 m
144 90 10010000 44 s4

171 AB 10101011 45 E
230 E6 11100110 46 J2

49 31 00110001 47 c16

83 53 01010011 48 K16

245 F5 11110101 49 g16

4 04 00000100 50 A2

12 0C 00001100 51 γ
20 14 00010100 52 C4

60 3C 00111100 53 M64

68 44 01000100 54 F 2

204 CC 11001100 55 a8

79 4F 01001111 56 d8

209 D1 11010001 57 f 64

104 68 01101000 58 j64

184 B8 10111000 59 G64

211 D3 11010011 60 T 4

110 6E 01101110 61 S64

178 B2 10110010 62 D64

45

dec hex binary logB name

205 CD 11001101 63 k64

76 4C 01001100 64 B64

212 D4 11010100 65 r64

103 67 01100111 66 l64

169 A9 10101001 67 C64

224 E0 11100000 68 α4

59 3B 00111011 69 N64

77 4D 01001101 70 A64

215 D7 11010111 71 j8

98 62 01100010 72 l8

166 A6 10100110 73 H64

241 F1 11110001 74 H2

8 08 00001000 75 E64

24 18 00011000 76 g4

40 28 00101000 77 M16

120 78 01111000 78 f 16

136 88 10001000 79 S16

131 83 10000011 80 r16

158 9E 10011110 81 N16

185 B9 10111001 82 H16

208 D0 11010000 83 M4

107 6B 01101011 84 N4

189 BD 10111101 85 Ω
220 DC 11011100 86 m2

127 7F 01111111 87 n8

129 81 10000001 88 s8

152 98 10011000 89 m8

179 B3 10110011 90 E2

206 CE 11001110 91 h32

73 49 01001001 92 J4

219 DB 11011011 93 n32

118 76 01110110 94 c32

dec hex binary logB name

154 9A 10011010 95 R32

181 B5 10110101 96 K32

196 C4 11000100 97 s32

87 57 01010111 98 g32

249 F9 11111001 99 F 32

16 10 00010000 100 A4

48 30 00110000 101 m32

80 50 01010000 102 γ2

240 F0 11110000 103 G8

11 0B 00001011 104 C8

29 1D 00011101 105 E8

39 27 00100111 106 M128

105 69 01101001 107 h4

187 BB 10111011 108 F 4

214 D6 11010110 109 h128

97 61 01100001 110 a16

163 A3 10100011 111 L16

254 FE 11111110 112 d16

25 19 00011001 113 J16

43 2B 00101011 114 f 128

125 7D 01111101 115 a128

135 87 10000111 116 j128

146 92 10010010 117 n128

173 AD 10101101 118 G128

236 EC 11101100 119 β8

47 2F 00101111 120 T 8

113 71 01110001 121 c128

147 93 10010011 122 S128

174 AE 10101110 123 L128

233 E9 11101001 124 D128

32 20 00100000 125 R128

96 60 01100000 126 k128

46

dec hex binary logB name

160 A0 10100000 127 b128

251 FB 11111011 128 B128

22 16 00010110 129 K128

58 3A 00111010 130 r128

78 4E 01001110 131 d128

210 D2 11010010 132 l128

109 6D 01101101 133 s128

183 B7 10110111 134 C128

194 C2 11000010 135 T 128

93 5D 01011101 136 α8

231 E7 11100111 137 g128

50 32 00110010 138 N128

86 56 01010110 139 J128

250 FA 11111010 140 A128

21 15 00010101 141 F 128

63 3F 00111111 142 j16

65 41 01000001 143 D16

195 C3 11000011 144 l16

94 5E 01011110 145 A16

226 E2 11100010 146 H128

61 3D 00111101 147 f 4

71 47 01000111 148 H4

201 C9 11001001 149 m128

64 40 01000000 150 E128

192 C0 11000000 151 c8

91 5B 01011011 152 g8

237 ED 11101101 153 γ8

44 2C 00101100 154 M32

116 74 01110100 155 a4

156 9C 10011100 156 f 32

191 BF 10111111 157 G32

218 DA 11011010 158 S32

dec hex binary logB name

117 75 01110101 159 k32

159 9F 10011111 160 r32

186 BA 10111010 161 C32

213 D5 11010101 162 N32

100 64 01100100 163 j4

172 AC 10101100 164 H32

239 EF 11101111 165 E32

42 2A 00101010 166 M8

126 7E 01111110 167 S8

130 82 10000010 168 N8

157 9D 10011101 169 M2

188 BC 10111100 170 Ω2

223 DF 11011111 171 n4

122 7A 01111010 172 m4

142 8E 10001110 173 h16

137 89 10001001 174 n16

128 80 10000000 175 R16

155 9B 10011011 176 s16

182 B6 10110110 177 F 16

193 C1 11000001 178 m16

88 58 01011000 179 G4

232 E8 11101000 180 E4

35 23 00100011 181 h2

101 65 01100101 182 h64

175 AF 10101111 183 L8

234 EA 11101010 184 J8

37 25 00100101 185 a64

111 6F 01101111 186 n64

177 B1 10110001 187 β4

200 C8 11001000 188 c64

67 43 01000011 189 L64

197 C5 11000101 190 R64

47

dec hex binary logB name

84 54 01010100 191 b64

252 FC 11111100 192 K64

31 1F 00011111 193 d64

33 21 00100001 194 s64

99 63 01100011 195 T 64

165 A5 10100101 196 g64

244 F4 11110100 197 J64

7 07 00000111 198 F 64

9 09 00001001 199 D8

27 1B 00011011 200 A8

45 2D 00101101 201 f 2

119 77 01110111 202 m64

153 99 10011001 203 c4

176 B0 10110000 204 γ4

203 CB 11001011 205 a2

70 46 01000110 206 G16

202 CA 11001010 207 k16

69 45 01000101 208 C16

207 CF 11001111 209 j2

74 4A 01001010 210 E16

222 DE 11011110 211 S4

121 79 01111001 212 M
139 8B 10001011 213 n2

134 86 10000110 214 h8

145 91 10010001 215 R8

168 A8 10101000 216 F 8

227 E3 11100011 217 G2

62 3E 00111110 218 h
66 42 01000010 219 L4

198 C6 11000110 220 a32

81 51 01010001 221 β2

243 F3 11110011 222 L32

dec hex binary logB name

14 0E 00001110 223 b32

18 12 00010010 224 d32

54 36 00110110 225 T 32

90 5A 01011010 226 J32

238 EE 11101110 227 D4

41 29 00101001 228 f
123 7B 01111011 229 c2

141 8D 10001101 230 a
140 8C 10001100 231 k8

143 8F 10001111 232 j
138 8A 10001010 233 S2

133 85 10000101 234 n
148 94 10010100 235 R4

167 A7 10100111 236 G
242 F2 11110010 237 L2

13 0D 00001101 238 β
23 17 00010111 239 b16

57 39 00111001 240 T 16

75 4B 01001011 241 D2

221 DD 11011101 242 c
124 7C 01111100 243 k4

132 84 10000100 244 S
151 97 10010111 245 R2

162 A2 10100010 246 L
253 FD 11111101 247 b8

28 1C 00011100 248 D
36 24 00100100 249 k2

108 6C 01101100 250 R
180 B4 10110100 251 b4

199 C7 11000111 252 k
82 52 01010010 253 b2

246 F6 11110110 254 b

48

D.3 Polynomial Table

Each minimal polynomial over GF(2) is listed as a bit string of coefficients, e.g., 100011011
means x8 + x4 + x3 + x + 1 = q(x). Reversing the bit string corresponds to inverting the
roots; the ordering is in such pairs. The conjugate roots are given in terms of logB; the first
listed is given the name shown. The “order” is in the multiplicative subgroup, e.g., γ5 = 1.

name polynomial order logB of conjugates

0 10 1 −∞
1 11 1 0

Ω 111 3 85 170

α 10011 15 17 34 68 136
β 11001 15 238 221 187 119
γ 11111 5 51 102 204 153

A 100011011 51 25 50 100 200 145 35 70 140
a 110110001 51 230 205 155 55 110 220 185 115
B 100011101 255 1 2 4 8 16 32 64 128
b 101110001 255 254 253 251 247 239 223 191 127
C 100101011 255 13 26 52 104 208 161 67 134
c 110101001 255 242 229 203 151 47 94 188 121
D 100101101 255 248 241 227 199 143 31 62 124
d 101101001 255 7 14 28 56 112 224 193 131
E 100111001 17 45 90 180 105 210 165 75 150
F 100111111 85 27 54 108 216 177 99 198 141
f 111111001 85 228 201 147 39 78 156 57 114
G 101001101 255 236 217 179 103 206 157 59 118
g 101100101 255 19 38 76 152 49 98 196 137
H 101011111 255 37 74 148 41 82 164 73 146
h 111110101 255 218 181 107 214 173 91 182 109
J 101100011 255 23 46 92 184 113 226 197 139
j 110001101 255 232 209 163 71 142 29 58 116
K 101110111 85 3 6 12 24 48 96 192 129
k 111011101 85 252 249 243 231 207 159 63 126
L 101111011 85 246 237 219 183 111 222 189 123
l 110111101 85 9 18 36 72 144 33 66 132
M 110000111 255 212 169 83 166 77 154 53 106
m 111000011 255 43 86 172 89 178 101 202 149
N 110001011 85 21 42 84 168 81 162 69 138
n 110100011 85 234 213 171 87 174 93 186 117
R 110011111 51 250 245 235 215 175 95 190 125
r 111110011 51 5 10 20 40 80 160 65 130
S 111001111 255 244 233 211 167 79 158 61 122
s 111100111 255 11 22 44 88 176 97 194 133
T 111010111 17 15 30 60 120 240 225 195 135

49

E All Possible Bases

The following table shows all 432 possible combinations of bases for GF(28), GF(24), and
GF(22) for which the trace is unity (τ = T = 1). Each subfield basis is given as an ordered
pair; if the second entry is 1 then it is a polynomial basis, otherwise a normal basis. The
GF(28) basis uses roots of r(y) = y2+y+ν, the GF(24) basis uses roots of s(z) = z2+z+N ,
where ν and N are the respective norms, and the GF(22) basis uses roots of t(w) = w2+w+1.
The basis and norm entries use the naming convention summarized in Table D.3. Ex-

plicitly, in terms of the standard AES basis: in subfield GF(22), Ω = 189 = 0xBD; in
subfield GF(24), α = 225 = 0xE1, β = 13 = 0x0D, and γ = 12 = 0x0C; in the main field,
d = 255 = 0xFF and L = 162 = 0xA2.
The coefficients C and D of ν with respect to the GF(24) basis are given in terms of N ,

as is the root w, as on page 15.
Under “XOR Gates,” the first column shows the number of XOR gates for the inverter;

each also includes 36 AND’s. For bases 1—144, this number includes all of the low-level
optimizations given in Section 4.4; bases 145 and beyond use a polynomial basis for GF(28),
and for those cases the inverter number is an estimate (except for 8 cases where these
optimizations were explicitly included: 159, 177, 191, 209, 234, 252, 260, and 278). The
last three columns show the XOR’s for a complete S-box, an inverse S-box, and a merged
combination of both with a shared inverter (excluding multiplexors); each would also have 36
AND’s and possibly a few NOT’s (for the affine transformation). A superscript o means the
basis change matrices (8×8 for the separate architecture, 16×8 for the merged architecture)
were fully optimized by the tree-search algorithm; otherwise they were factored by the greedy
algorithm.

50

Case Bases Norms Coefficients XOR Gates
GF(28) GF(24) GF(22) ν N C D w = inv. S-box S-box−1 Both

1 [d16, d] [α4,α] [Ω2,Ω] β8 Ω N2 1 N 66 99o 94o 122
2 [d16, d] [α4,α] [Ω, 1] β8 Ω N2 1 N 66 94o 93o 119
3 [d16, d] [α4,α] [Ω2, 1] β8 Ω N2 1 N2 66 94o 92o 116
4 [d16, d] [α8,α2] [Ω2,Ω] β8 Ω2 0 N2 N2 66 90o 91o 104o

5 [d16, d] [α8,α2] [Ω, 1] β8 Ω2 0 N2 N2 66 92o 92o 109o

6 [d16, d] [α8,α2] [Ω2, 1] β8 Ω2 0 N2 N 66 92o 94o 113
7 [d16, d] [α, 1] [Ω2,Ω] β8 Ω N N2 N 67 98 95 119
8 [d16, d] [α, 1] [Ω, 1] β8 Ω N N2 N 68 97 96 117
9 [d16, d] [α, 1] [Ω2, 1] β8 Ω N N2 N2 68 98 95 119
10 [d16, d] [α4, 1] [Ω2,Ω] β8 Ω N 1 N 67 95o 94o 117
11 [d16, d] [α4, 1] [Ω, 1] β8 Ω N 1 N 67 93o 94o 115
12 [d16, d] [α4, 1] [Ω2, 1] β8 Ω N 1 N2 67 94 96 118
13 [d16, d] [α2, 1] [Ω2,Ω] β8 Ω2 N2 0 N2 67 91o 92o 114
14 [d16, d] [α2, 1] [Ω, 1] β8 Ω2 N2 0 N2 67 93o 93o 114
15 [d16, d] [α2, 1] [Ω2, 1] β8 Ω2 N2 0 N 67 94o 95o 118
16 [d16, d] [α8, 1] [Ω2,Ω] β8 Ω2 N2 N2 N2 67 91o 93o 111o

17 [d16, d] [α8, 1] [Ω, 1] β8 Ω2 N2 N2 N2 67 92o 94o 113
18 [d16, d] [α8, 1] [Ω2, 1] β8 Ω2 N2 N2 N 67 93o 94o 117
19 [d32, d2] [α4,α] [Ω2,Ω] β Ω N2 0 N 66 100 101 124
20 [d32, d2] [α4,α] [Ω, 1] β Ω N2 0 N 66 99 100 118
21 [d32, d2] [α4,α] [Ω2, 1] β Ω N2 0 N2 66 96 99 116
22 [d32, d2] [α8,α2] [Ω2,Ω] β Ω2 N2 1 N2 66 96o 97o 116
23 [d32, d2] [α8,α2] [Ω, 1] β Ω2 N2 1 N2 66 94o 92o 107o

24 [d32, d2] [α8,α2] [Ω2, 1] β Ω2 N2 1 N 66 94o 94o 117
25 [d32, d2] [α, 1] [Ω2,Ω] β Ω N2 N2 N 67 101 100 121
26 [d32, d2] [α, 1] [Ω, 1] β Ω N2 N2 N 67 97 99 122
27 [d32, d2] [α, 1] [Ω2, 1] β Ω N2 N2 N2 67 100 95 121
28 [d32, d2] [α4, 1] [Ω2,Ω] β Ω N2 0 N 67 99 99 122
29 [d32, d2] [α4, 1] [Ω, 1] β Ω N2 0 N 67 96o 93o 117
30 [d32, d2] [α4, 1] [Ω2, 1] β Ω N2 0 N2 67 96 98 118
31 [d32, d2] [α2, 1] [Ω2,Ω] β Ω2 N N2 N2 67 97 98 122
32 [d32, d2] [α2, 1] [Ω, 1] β Ω2 N N2 N2 68 99 94 115
33 [d32, d2] [α2, 1] [Ω2, 1] β Ω2 N N2 N 68 103 96 120
34 [d32, d2] [α8, 1] [Ω2,Ω] β Ω2 N 1 N2 67 94o 97o 113
35 [d32, d2] [α8, 1] [Ω, 1] β Ω2 N 1 N2 67 93o 93o 110o

36 [d32, d2] [α8, 1] [Ω2, 1] β Ω2 N 1 N 67 92o 94o 118

ofully optimized results

51

Case Bases Norms Coefficients XOR Gates
GF(28) GF(24) GF(22) ν N C D w = inv. S-box S-box−1 Both

37 [d64, d4] [α4,α] [Ω2,Ω] β2 Ω 1 N2 N 66 94o 93o 115
38 [d64, d4] [α4,α] [Ω, 1] β2 Ω 1 N2 N 66 94o 93o 117
39 [d64, d4] [α4,α] [Ω2, 1] β2 Ω 1 N2 N2 66 95o 92o 113
40 [d64, d4] [α8,α2] [Ω2,Ω] β2 Ω2 N2 0 N2 66 96 93 117
41 [d64, d4] [α8,α2] [Ω, 1] β2 Ω2 N2 0 N2 66 95 98 119
42 [d64, d4] [α8,α2] [Ω2, 1] β2 Ω2 N2 0 N 66 96 100 119
43 [d64, d4] [α, 1] [Ω2,Ω] β2 Ω N 1 N 67 92o 90o 113
44 [d64, d4] [α, 1] [Ω, 1] β2 Ω N 1 N 67 91o 92o 107o

45 [d64, d4] [α, 1] [Ω2, 1] β2 Ω N 1 N2 67 91o 91o 109o

46 [d64, d4] [α4, 1] [Ω2,Ω] β2 Ω N N2 N 67 97 95 120
47 [d64, d4] [α4, 1] [Ω, 1] β2 Ω N N2 N 68 98 96 116
48 [d64, d4] [α4, 1] [Ω2, 1] β2 Ω N N2 N2 68 97 99 119
49 [d64, d4] [α2, 1] [Ω2,Ω] β2 Ω2 N2 N2 N2 67 95 95 119
50 [d64, d4] [α2, 1] [Ω, 1] β2 Ω2 N2 N2 N2 67 93 97 109o

51 [d64, d4] [α2, 1] [Ω2, 1] β2 Ω2 N2 N2 N 67 94o 96o 118
52 [d64, d4] [α8, 1] [Ω2,Ω] β2 Ω2 N2 0 N2 67 95o 95o 117
53 [d64, d4] [α8, 1] [Ω, 1] β2 Ω2 N2 0 N2 67 94 95 115
54 [d64, d4] [α8, 1] [Ω2, 1] β2 Ω2 N2 0 N 67 96 97 115
55 [d128, d8] [α4,α] [Ω2,Ω] β4 Ω 0 N2 N 66 95 98 122
56 [d128, d8] [α4,α] [Ω, 1] β4 Ω 0 N2 N 66 96 98 122
57 [d128, d8] [α4,α] [Ω2, 1] β4 Ω 0 N2 N2 66 95 98 118
58 [d128, d8] [α8,α2] [Ω2,Ω] β4 Ω2 1 N2 N2 66 96o 96o 115
59 [d128, d8] [α8,α2] [Ω, 1] β4 Ω2 1 N2 N2 66 97 99 119
60 [d128, d8] [α8,α2] [Ω2, 1] β4 Ω2 1 N2 N 66 96 98 114
61 [d128, d8] [α, 1] [Ω2,Ω] β4 Ω N2 0 N 67 97 99 119
62 [d128, d8] [α, 1] [Ω, 1] β4 Ω N2 0 N 67 94o 96o 116
63 [d128, d8] [α, 1] [Ω2, 1] β4 Ω N2 0 N2 67 99 99 119
64 [d128, d8] [α4, 1] [Ω2,Ω] β4 Ω N2 N2 N 67 98 100 120
65 [d128, d8] [α4, 1] [Ω, 1] β4 Ω N2 N2 N 67 95o 95o 118
66 [d128, d8] [α4, 1] [Ω2, 1] β4 Ω N2 N2 N2 67 97 97 120
67 [d128, d8] [α2, 1] [Ω2,Ω] β4 Ω2 N 1 N2 67 98 98 121
68 [d128, d8] [α2, 1] [Ω, 1] β4 Ω2 N 1 N2 67 94o 93o 119
69 [d128, d8] [α2, 1] [Ω2, 1] β4 Ω2 N 1 N 67 101 100 123
70 [d128, d8] [α8, 1] [Ω2,Ω] β4 Ω2 N N2 N2 67 99 99 122
71 [d128, d8] [α8, 1] [Ω, 1] β4 Ω2 N N2 N2 68 100 99 124
72 [d128, d8] [α8, 1] [Ω2, 1] β4 Ω2 N N2 N 68 102 100 119

ofully optimized results

52

Case Bases Norms Coefficients XOR Gates
GF(28) GF(24) GF(22) ν N C D w = inv. S-box S-box−1 Both

73 [L16, L] [α4,α] [Ω2,Ω] γ2 Ω 0 N N 66 94o 93o 117
74 [L16, L] [α4,α] [Ω, 1] γ2 Ω 0 N N 66 98 96 120
75 [L16, L] [α4,α] [Ω2, 1] γ2 Ω 0 N N2 66 96o 93o 119
76 [L16, L] [α8,α2] [Ω2,Ω] γ2 Ω2 N 1 N2 66 92o 93o 115
77 [L16, L] [α8,α2] [Ω, 1] γ2 Ω2 N 1 N2 66 93o 94o 119
78 [L16, L] [α8,α2] [Ω2, 1] γ2 Ω2 N 1 N 66 93o 95o 117
79 [L16, L] [α, 1] [Ω2,Ω] γ2 Ω N 0 N 67 93o 92o 114
80 [L16, L] [α, 1] [Ω, 1] γ2 Ω N 0 N 67 92o 93o 116
81 [L16, L] [α, 1] [Ω2, 1] γ2 Ω N 0 N2 67 94o 93o 115
82 [L16, L] [α4, 1] [Ω2,Ω] γ2 Ω N N N 67 94o 96o 116
83 [L16, L] [α4, 1] [Ω, 1] γ2 Ω N N N 67 94o 93o 116
84 [L16, L] [α4, 1] [Ω2, 1] γ2 Ω N N N2 67 93o 94o 115
85 [L16, L] [α2, 1] [Ω2,Ω] γ2 Ω2 N2 N N2 67 92o 93o 113
86 [L16, L] [α2, 1] [Ω, 1] γ2 Ω2 N2 N N2 67 92o 94o 116
87 [L16, L] [α2, 1] [Ω2, 1] γ2 Ω2 N2 N N 67 93o 95o 117
88 [L16, L] [α8, 1] [Ω2,Ω] γ2 Ω2 N2 1 N2 67 94o 94o 113
89 [L16, L] [α8, 1] [Ω, 1] γ2 Ω2 N2 1 N2 68 92o 92o 115
90 [L16, L] [α8, 1] [Ω2, 1] γ2 Ω2 N2 1 N 67 93 94 115
91 [L32, L2] [α4,α] [Ω2,Ω] γ4 Ω 1 N N 66 96o 95o 119
92 [L32, L2] [α4,α] [Ω, 1] γ4 Ω 1 N N 66 99 96 121
93 [L32, L2] [α4,α] [Ω2, 1] γ4 Ω 1 N N2 66 99 97 118
94 [L32, L2] [α8,α2] [Ω2,Ω] γ4 Ω2 0 N N2 66 94o 94o 113
95 [L32, L2] [α8,α2] [Ω, 1] γ4 Ω2 0 N N2 66 95 97 118
96 [L32, L2] [α8,α2] [Ω2, 1] γ4 Ω2 0 N N 66 93o 95o 119
97 [L32, L2] [α, 1] [Ω2,Ω] γ4 Ω N2 1 N 67 101 100 125
98 [L32, L2] [α, 1] [Ω, 1] γ4 Ω N2 1 N 67 98 100 124
99 [L32, L2] [α, 1] [Ω2, 1] γ4 Ω N2 1 N2 68 100 101 122
100 [L32, L2] [α4, 1] [Ω2,Ω] γ4 Ω N2 N N 67 92o 93o 117
101 [L32, L2] [α4, 1] [Ω, 1] γ4 Ω N2 N N 67 97 96 120
102 [L32, L2] [α4, 1] [Ω2, 1] γ4 Ω N2 N N2 67 97 99 122
103 [L32, L2] [α2, 1] [Ω2,Ω] γ4 Ω2 N 0 N2 67 97 98 121
104 [L32, L2] [α2, 1] [Ω, 1] γ4 Ω2 N 0 N2 67 94o 96o 118
105 [L32, L2] [α2, 1] [Ω2, 1] γ4 Ω2 N 0 N 67 96 97 119
106 [L32, L2] [α8, 1] [Ω2,Ω] γ4 Ω2 N N N2 67 97 101 121
107 [L32, L2] [α8, 1] [Ω, 1] γ4 Ω2 N N N2 67 96o 95o 116
108 [L32, L2] [α8, 1] [Ω2, 1] γ4 Ω2 N N N 67 98 98 118

ofully optimized results

53

Case Bases Norms Coefficients XOR Gates
GF(28) GF(24) GF(22) ν N C D w = inv. S-box S-box−1 Both

109 [L64, L4] [α4,α] [Ω2,Ω] γ8 Ω N 0 N 66 91o 93o 114
110 [L64, L4] [α4,α] [Ω, 1] γ8 Ω N 0 N 66 91o 92o 113
111 [L64, L4] [α4,α] [Ω2, 1] γ8 Ω N 0 N2 66 91o 93o 108o

112 [L64, L4] [α8,α2] [Ω2,Ω] γ8 Ω2 1 N N2 66 93o 90o 114
113 [L64, L4] [α8,α2] [Ω, 1] γ8 Ω2 1 N N2 66 94o 90o 109o

114 [L64, L4] [α8,α2] [Ω2, 1] γ8 Ω2 1 N N 66 91o 90o 108o

115 [L64, L4] [α, 1] [Ω2,Ω] γ8 Ω N N N 67 94o 96o 115
116 [L64, L4] [α, 1] [Ω, 1] γ8 Ω N N N 67 93o 94o 115
117 [L64, L4] [α, 1] [Ω2, 1] γ8 Ω N N N2 67 92o 94o 109o

118 [L64, L4] [α4, 1] [Ω2,Ω] γ8 Ω N 0 N 67 93 96 113
119 [L64, L4] [α4, 1] [Ω, 1] γ8 Ω N 0 N 67 93o 93o 118
120 [L64, L4] [α4, 1] [Ω2, 1] γ8 Ω N 0 N2 67 92o 93o 116
121 [L64, L4] [α2, 1] [Ω2,Ω] γ8 Ω2 N2 1 N2 67 98 94 119
122 [L64, L4] [α2, 1] [Ω, 1] γ8 Ω2 N2 1 N2 68 95o 93o 114
123 [L64, L4] [α2, 1] [Ω2, 1] γ8 Ω2 N2 1 N 67 95o 93o 116
124 [L64, L4] [α8, 1] [Ω2,Ω] γ8 Ω2 N2 N N2 67 95 94 115
125 [L64, L4] [α8, 1] [Ω, 1] γ8 Ω2 N2 N N2 67 93o 90o 110o

126 [L64, L4] [α8, 1] [Ω2, 1] γ8 Ω2 N2 N N 67 94o 92o 116
127 [L128, L8] [α4,α] [Ω2,Ω] γ Ω N 1 N 66 96o 97o 119
128 [L128, L8] [α4,α] [Ω, 1] γ Ω N 1 N 66 97 100 119
129 [L128, L8] [α4,α] [Ω2, 1] γ Ω N 1 N2 66 100 101 121
130 [L128, L8] [α8,α2] [Ω2,Ω] γ Ω2 N 0 N2 66 92o 91o 115
131 [L128, L8] [α8,α2] [Ω, 1] γ Ω2 N 0 N2 66 94o 95o 120
132 [L128, L8] [α8,α2] [Ω2, 1] γ Ω2 N 0 N 66 92o 95o 116
133 [L128, L8] [α, 1] [Ω2,Ω] γ Ω N2 N N 67 99 101 120
134 [L128, L8] [α, 1] [Ω, 1] γ Ω N2 N N 67 98 99 119
135 [L128, L8] [α, 1] [Ω2, 1] γ Ω N2 N N2 67 99 100 121
136 [L128, L8] [α4, 1] [Ω2,Ω] γ Ω N2 1 N 67 101 99 123
137 [L128, L8] [α4, 1] [Ω, 1] γ Ω N2 1 N 67 98 99 122
138 [L128, L8] [α4, 1] [Ω2, 1] γ Ω N2 1 N2 68 100 101 126
139 [L128, L8] [α2, 1] [Ω2,Ω] γ Ω2 N N N2 67 97 102 119
140 [L128, L8] [α2, 1] [Ω, 1] γ Ω2 N N N2 67 97 100 120
141 [L128, L8] [α2, 1] [Ω2, 1] γ Ω2 N N N 67 100 100 122
142 [L128, L8] [α8, 1] [Ω2,Ω] γ Ω2 N 0 N2 67 95o 94o 116
143 [L128, L8] [α8, 1] [Ω, 1] γ Ω2 N 0 N2 67 95o 97o 119
144 [L128, L8] [α8, 1] [Ω2, 1] γ Ω2 N 0 N 67 96 98 117

ofully optimized results

54

Case Bases Norms Coefficients XOR Gates
GF(28) GF(24) GF(22) ν N C D w = inv. S-box S-box−1 Both

145 [d, 1] [α4,α] [Ω2,Ω] β8 Ω N2 1 N 72 100o 98o 122
146 [d, 1] [α4,α] [Ω, 1] β8 Ω N2 1 N 72 100 99 122
147 [d, 1] [α4,α] [Ω2, 1] β8 Ω N2 1 N2 72 97o 97o 121
148 [d, 1] [α8,α2] [Ω2,Ω] β8 Ω2 0 N2 N2 72 96o 97o 115
149 [d, 1] [α8,α2] [Ω, 1] β8 Ω2 0 N2 N2 72 97o 99o 112o

150 [d, 1] [α8,α2] [Ω2, 1] β8 Ω2 0 N2 N 72 98 100 119
151 [d, 1] [α, 1] [Ω2,Ω] β8 Ω N N2 N 73 101o 98o 123
152 [d, 1] [α, 1] [Ω, 1] β8 Ω N N2 N 74 100o 99o 117
153 [d, 1] [α, 1] [Ω2, 1] β8 Ω N N2 N2 74 99o 98o 120
154 [d, 1] [α4, 1] [Ω2,Ω] β8 Ω N 1 N 73 97o 97o 123
155 [d, 1] [α4, 1] [Ω, 1] β8 Ω N 1 N 73 97o 96o 120
156 [d, 1] [α4, 1] [Ω2, 1] β8 Ω N 1 N2 73 99o 100o 124
157 [d, 1] [α2, 1] [Ω2,Ω] β8 Ω2 N2 0 N2 73 99 100 116
158 [d, 1] [α2, 1] [Ω, 1] β8 Ω2 N2 0 N2 73 97o 98o 118
159 [d, 1] [α2, 1] [Ω2, 1] β8 Ω2 N2 0 N 73 98o 101o 121
160 [d, 1] [α8, 1] [Ω2,Ω] β8 Ω2 N2 N2 N2 73 97o 95o 117
161 [d, 1] [α8, 1] [Ω, 1] β8 Ω2 N2 N2 N2 73 96o 96o 116
162 [d, 1] [α8, 1] [Ω2, 1] β8 Ω2 N2 N2 N 73 100 99 122
163 [d16, 1] [α4,α] [Ω2,Ω] β8 Ω N2 1 N 72 104 103 127
164 [d16, 1] [α4,α] [Ω, 1] β8 Ω N2 1 N 72 101o 99o 124
165 [d16, 1] [α4,α] [Ω2, 1] β8 Ω N2 1 N2 72 104 101 128
166 [d16, 1] [α8,α2] [Ω2,Ω] β8 Ω2 0 N2 N2 72 97o 98o 117
167 [d16, 1] [α8,α2] [Ω, 1] β8 Ω2 0 N2 N2 72 98 102 119
168 [d16, 1] [α8,α2] [Ω2, 1] β8 Ω2 0 N2 N 72 100o 98o 120
169 [d16, 1] [α, 1] [Ω2,Ω] β8 Ω N N2 N 73 100 99 122
170 [d16, 1] [α, 1] [Ω, 1] β8 Ω N N2 N 74 105 103 125
171 [d16, 1] [α, 1] [Ω2, 1] β8 Ω N N2 N2 74 104 105 128
172 [d16, 1] [α4, 1] [Ω2,Ω] β8 Ω N 1 N 73 103 104 125
173 [d16, 1] [α4, 1] [Ω, 1] β8 Ω N 1 N 73 99o 101o 124
174 [d16, 1] [α4, 1] [Ω2, 1] β8 Ω N 1 N2 73 103 103 125
175 [d16, 1] [α2, 1] [Ω2,Ω] β8 Ω2 N2 0 N2 73 101 98 121
176 [d16, 1] [α2, 1] [Ω, 1] β8 Ω2 N2 0 N2 73 99o 100o 120
177 [d16, 1] [α2, 1] [Ω2, 1] β8 Ω2 N2 0 N 73 100o 101o 120
178 [d16, 1] [α8, 1] [Ω2,Ω] β8 Ω2 N2 N2 N2 73 98o 99o 121
179 [d16, 1] [α8, 1] [Ω, 1] β8 Ω2 N2 N2 N2 73 99o 101o 121
180 [d16, 1] [α8, 1] [Ω2, 1] β8 Ω2 N2 N2 N 73 100o 99o 122

ofully optimized results

55

Case Bases Norms Coefficients XOR Gates
GF(28) GF(24) GF(22) ν N C D w = inv. S-box S-box−1 Both

181 [d2, 1] [α4,α] [Ω2,Ω] β Ω N2 0 N 72 102 102 124
182 [d2, 1] [α4,α] [Ω, 1] β Ω N2 0 N 72 102 102 124
183 [d2, 1] [α4,α] [Ω2, 1] β Ω N2 0 N2 72 99o 100o 121
184 [d2, 1] [α8,α2] [Ω2,Ω] β Ω2 N2 1 N2 72 98 100 120
185 [d2, 1] [α8,α2] [Ω, 1] β Ω2 N2 1 N2 72 98 100 116
186 [d2, 1] [α8,α2] [Ω2, 1] β Ω2 N2 1 N 72 96o 99o 119
187 [d2, 1] [α, 1] [Ω2,Ω] β Ω N2 N2 N 73 103 105 125
188 [d2, 1] [α, 1] [Ω, 1] β Ω N2 N2 N 73 103 101 122
189 [d2, 1] [α, 1] [Ω2, 1] β Ω N2 N2 N2 73 100o 102o 125
190 [d2, 1] [α4, 1] [Ω2,Ω] β Ω N2 0 N 73 102 106 124
191 [d2, 1] [α4, 1] [Ω, 1] β Ω N2 0 N 73 101o 101o 126
192 [d2, 1] [α4, 1] [Ω2, 1] β Ω N2 0 N2 73 105 104 126
193 [d2, 1] [α2, 1] [Ω2,Ω] β Ω2 N N2 N2 73 102 104 123
194 [d2, 1] [α2, 1] [Ω, 1] β Ω2 N N2 N2 74 101o 99o 120
195 [d2, 1] [α2, 1] [Ω2, 1] β Ω2 N N2 N 74 104 104 127
196 [d2, 1] [α8, 1] [Ω2,Ω] β Ω2 N 1 N2 73 99 100 121
197 [d2, 1] [α8, 1] [Ω, 1] β Ω2 N 1 N2 73 97o 97o 116
198 [d2, 1] [α8, 1] [Ω2, 1] β Ω2 N 1 N 73 102 99 124
199 [d32, 1] [α4,α] [Ω2,Ω] β Ω N2 0 N 72 104 105 130
200 [d32, 1] [α4,α] [Ω, 1] β Ω N2 0 N 72 104 100 126
201 [d32, 1] [α4,α] [Ω2, 1] β Ω N2 0 N2 72 103 103 125
202 [d32, 1] [α8,α2] [Ω2,Ω] β Ω2 N2 1 N2 72 99 99 121
203 [d32, 1] [α8,α2] [Ω, 1] β Ω2 N2 1 N2 72 96o 97o 116
204 [d32, 1] [α8,α2] [Ω2, 1] β Ω2 N2 1 N 72 99o 99o 123
205 [d32, 1] [α, 1] [Ω2,Ω] β Ω N2 N2 N 73 100o 99o 125
206 [d32, 1] [α, 1] [Ω, 1] β Ω N2 N2 N 73 102o 99o 121
207 [d32, 1] [α, 1] [Ω2, 1] β Ω N2 N2 N2 73 102 103 125
208 [d32, 1] [α4, 1] [Ω2,Ω] β Ω N2 0 N 73 100o 103o 128
209 [d32, 1] [α4, 1] [Ω, 1] β Ω N2 0 N 73 100o 99o 120
210 [d32, 1] [α4, 1] [Ω2, 1] β Ω N2 0 N2 73 104 101 122
211 [d32, 1] [α2, 1] [Ω2,Ω] β Ω2 N N2 N2 73 102 103 127
212 [d32, 1] [α2, 1] [Ω, 1] β Ω2 N N2 N2 74 104 101 125
213 [d32, 1] [α2, 1] [Ω2, 1] β Ω2 N N2 N 74 104 102 125
214 [d32, 1] [α8, 1] [Ω2,Ω] β Ω2 N 1 N2 73 98o 100o 124
215 [d32, 1] [α8, 1] [Ω, 1] β Ω2 N 1 N2 73 99o 97o 121
216 [d32, 1] [α8, 1] [Ω2, 1] β Ω2 N 1 N 73 98o 99o 125

ofully optimized results

56

Case Bases Norms Coefficients XOR Gates
GF(28) GF(24) GF(22) ν N C D w = inv. S-box S-box−1 Both

217 [d4, 1] [α4,α] [Ω2,Ω] β2 Ω 1 N2 N 72 100o 100o 123
218 [d4, 1] [α4,α] [Ω, 1] β2 Ω 1 N2 N 72 101o 99o 121
219 [d4, 1] [α4,α] [Ω2, 1] β2 Ω 1 N2 N2 72 100o 98o 120
220 [d4, 1] [α8,α2] [Ω2,Ω] β2 Ω2 N2 0 N2 72 98o 99o 123
221 [d4, 1] [α8,α2] [Ω, 1] β2 Ω2 N2 0 N2 72 102 102 120
222 [d4, 1] [α8,α2] [Ω2, 1] β2 Ω2 N2 0 N 72 98o 101o 122
223 [d4, 1] [α, 1] [Ω2,Ω] β2 Ω N 1 N 73 100 100 122
224 [d4, 1] [α, 1] [Ω, 1] β2 Ω N 1 N 73 97o 98o 114o

225 [d4, 1] [α, 1] [Ω2, 1] β2 Ω N 1 N2 73 100o 101o 118
226 [d4, 1] [α4, 1] [Ω2,Ω] β2 Ω N N2 N 73 99o 101o 122
227 [d4, 1] [α4, 1] [Ω, 1] β2 Ω N N2 N 74 103 104 124
228 [d4, 1] [α4, 1] [Ω2, 1] β2 Ω N N2 N2 74 106 102 123
229 [d4, 1] [α2, 1] [Ω2,Ω] β2 Ω2 N2 N2 N2 73 100 101 126
230 [d4, 1] [α2, 1] [Ω, 1] β2 Ω2 N2 N2 N2 73 98 102 120
231 [d4, 1] [α2, 1] [Ω2, 1] β2 Ω2 N2 N2 N 73 98o 100o 124
232 [d4, 1] [α8, 1] [Ω2,Ω] β2 Ω2 N2 0 N2 73 100o 98o 120
233 [d4, 1] [α8, 1] [Ω, 1] β2 Ω2 N2 0 N2 73 97o 98o 122
234 [d4, 1] [α8, 1] [Ω2, 1] β2 Ω2 N2 0 N 73 102o 100o 124
235 [d64, 1] [α4,α] [Ω2,Ω] β2 Ω 1 N2 N 72 100 100 118
236 [d64, 1] [α4,α] [Ω, 1] β2 Ω 1 N2 N 72 100 99 118
237 [d64, 1] [α4,α] [Ω2, 1] β2 Ω 1 N2 N2 72 99 99 123
238 [d64, 1] [α8,α2] [Ω2,Ω] β2 Ω2 N2 0 N2 72 100 100 122
239 [d64, 1] [α8,α2] [Ω, 1] β2 Ω2 N2 0 N2 72 96o 99o 117
240 [d64, 1] [α8,α2] [Ω2, 1] β2 Ω2 N2 0 N 72 99 100 123
241 [d64, 1] [α, 1] [Ω2,Ω] β2 Ω N 1 N 73 96o 96o 116
242 [d64, 1] [α, 1] [Ω, 1] β2 Ω N 1 N 73 98o 96o 116
243 [d64, 1] [α, 1] [Ω2, 1] β2 Ω N 1 N2 73 97o 98o 119
244 [d64, 1] [α4, 1] [Ω2,Ω] β2 Ω N N2 N 73 103 101 120
245 [d64, 1] [α4, 1] [Ω, 1] β2 Ω N N2 N 74 100o 102o 121
246 [d64, 1] [α4, 1] [Ω2, 1] β2 Ω N N2 N2 74 102 102 119
247 [d64, 1] [α2, 1] [Ω2,Ω] β2 Ω2 N2 N2 N2 73 101 100 124
248 [d64, 1] [α2, 1] [Ω, 1] β2 Ω2 N2 N2 N2 73 97o 97o 116
249 [d64, 1] [α2, 1] [Ω2, 1] β2 Ω2 N2 N2 N 73 98o 100o 121
250 [d64, 1] [α8, 1] [Ω2,Ω] β2 Ω2 N2 0 N2 73 98o 98o 120
251 [d64, 1] [α8, 1] [Ω, 1] β2 Ω2 N2 0 N2 73 97o 97o 116
252 [d64, 1] [α8, 1] [Ω2, 1] β2 Ω2 N2 0 N 73 99o 99o 115o

ofully optimized results

57

Case Bases Norms Coefficients XOR Gates
GF(28) GF(24) GF(22) ν N C D w = inv. S-box S-box−1 Both

253 [d8, 1] [α4,α] [Ω2,Ω] β4 Ω 0 N2 N 72 102 104 125
254 [d8, 1] [α4,α] [Ω, 1] β4 Ω 0 N2 N 72 102 104 126
255 [d8, 1] [α4,α] [Ω2, 1] β4 Ω 0 N2 N2 72 100o 102o 126
256 [d8, 1] [α8,α2] [Ω2,Ω] β4 Ω2 1 N2 N2 72 100o 100o 120
257 [d8, 1] [α8,α2] [Ω, 1] β4 Ω2 1 N2 N2 72 102 101 119
258 [d8, 1] [α8,α2] [Ω2, 1] β4 Ω2 1 N2 N 72 100 99 117
259 [d8, 1] [α, 1] [Ω2,Ω] β4 Ω N2 0 N 73 100o 100o 122
260 [d8, 1] [α, 1] [Ω, 1] β4 Ω N2 0 N 73 101o 101o 123
261 [d8, 1] [α, 1] [Ω2, 1] β4 Ω N2 0 N2 73 102 104 125
262 [d8, 1] [α4, 1] [Ω2,Ω] β4 Ω N2 N2 N 73 103 102 126
263 [d8, 1] [α4, 1] [Ω, 1] β4 Ω N2 N2 N 73 99o 101o 128
264 [d8, 1] [α4, 1] [Ω2, 1] β4 Ω N2 N2 N2 73 103 105 127
265 [d8, 1] [α2, 1] [Ω2,Ω] β4 Ω2 N 1 N2 73 105 101 124
266 [d8, 1] [α2, 1] [Ω, 1] β4 Ω2 N 1 N2 73 100o 98o 119
267 [d8, 1] [α2, 1] [Ω2, 1] β4 Ω2 N 1 N 73 102 104 120
268 [d8, 1] [α8, 1] [Ω2,Ω] β4 Ω2 N N2 N2 73 102 102 120
269 [d8, 1] [α8, 1] [Ω, 1] β4 Ω2 N N2 N2 74 102 104 128
270 [d8, 1] [α8, 1] [Ω2, 1] β4 Ω2 N N2 N 74 104 104 128
271 [d128, 1] [α4,α] [Ω2,Ω] β4 Ω 0 N2 N 72 99o 99o 122
272 [d128, 1] [α4,α] [Ω, 1] β4 Ω 0 N2 N 72 101o 99o 124
273 [d128, 1] [α4,α] [Ω2, 1] β4 Ω 0 N2 N2 72 100o 100o 122
274 [d128, 1] [α8,α2] [Ω2,Ω] β4 Ω2 1 N2 N2 72 105 99 124
275 [d128, 1] [α8,α2] [Ω, 1] β4 Ω2 1 N2 N2 72 99o 101o 120
276 [d128, 1] [α8,α2] [Ω2, 1] β4 Ω2 1 N2 N 72 103 104 126
277 [d128, 1] [α, 1] [Ω2,Ω] β4 Ω N2 0 N 73 103 103 125
278 [d128, 1] [α, 1] [Ω, 1] β4 Ω N2 0 N 73 101o 101o 122
279 [d128, 1] [α, 1] [Ω2, 1] β4 Ω N2 0 N2 73 103 105 125
280 [d128, 1] [α4, 1] [Ω2,Ω] β4 Ω N2 N2 N 73 103 103 125
281 [d128, 1] [α4, 1] [Ω, 1] β4 Ω N2 N2 N 73 102o 100o 122
282 [d128, 1] [α4, 1] [Ω2, 1] β4 Ω N2 N2 N2 73 104 104 126
283 [d128, 1] [α2, 1] [Ω2,Ω] β4 Ω2 N 1 N2 73 103 102 125
284 [d128, 1] [α2, 1] [Ω, 1] β4 Ω2 N 1 N2 73 99o 98o 121
285 [d128, 1] [α2, 1] [Ω2, 1] β4 Ω2 N 1 N 73 103 105 126
286 [d128, 1] [α8, 1] [Ω2,Ω] β4 Ω2 N N2 N2 73 100o 100o 123
287 [d128, 1] [α8, 1] [Ω, 1] β4 Ω2 N N2 N2 74 104 103 125
288 [d128, 1] [α8, 1] [Ω2, 1] β4 Ω2 N N2 N 74 105 105 127

ofully optimized results

58

Case Bases Norms Coefficients XOR Gates
GF(28) GF(24) GF(22) ν N C D w = inv. S-box S-box−1 Both

289 [L, 1] [α4,α] [Ω2,Ω] γ2 Ω 0 N N 72 99o 100o 125
290 [L, 1] [α4,α] [Ω, 1] γ2 Ω 0 N N 72 98o 98o 120
291 [L, 1] [α4,α] [Ω2, 1] γ2 Ω 0 N N2 72 102 102 126
292 [L, 1] [α8,α2] [Ω2,Ω] γ2 Ω2 N 1 N2 72 98o 98o 119
293 [L, 1] [α8,α2] [Ω, 1] γ2 Ω2 N 1 N2 72 96o 96o 116
294 [L, 1] [α8,α2] [Ω2, 1] γ2 Ω2 N 1 N 72 97o 99o 121
295 [L, 1] [α, 1] [Ω2,Ω] γ2 Ω N 0 N 73 98o 97o 119
296 [L, 1] [α, 1] [Ω, 1] γ2 Ω N 0 N 73 97o 96o 118
297 [L, 1] [α, 1] [Ω2, 1] γ2 Ω N 0 N2 73 98o 100o 117
298 [L, 1] [α4, 1] [Ω2,Ω] γ2 Ω N N N 73 98o 98o 123
299 [L, 1] [α4, 1] [Ω, 1] γ2 Ω N N N 73 99 102 120
300 [L, 1] [α4, 1] [Ω2, 1] γ2 Ω N N N2 73 101o 102o 125
301 [L, 1] [α2, 1] [Ω2,Ω] γ2 Ω2 N2 N N2 73 98o 99o 122
302 [L, 1] [α2, 1] [Ω, 1] γ2 Ω2 N2 N N2 73 96o 99o 119
303 [L, 1] [α2, 1] [Ω2, 1] γ2 Ω2 N2 N N 73 98 102 119
304 [L, 1] [α8, 1] [Ω2,Ω] γ2 Ω2 N2 1 N2 73 99o 95o 119
305 [L, 1] [α8, 1] [Ω, 1] γ2 Ω2 N2 1 N2 74 99o 98o 120
306 [L, 1] [α8, 1] [Ω2, 1] γ2 Ω2 N2 1 N 73 99o 99o 122
307 [L16, 1] [α4,α] [Ω2,Ω] γ2 Ω 0 N N 72 100o 101o 124
308 [L16, 1] [α4,α] [Ω, 1] γ2 Ω 0 N N 72 103 103 126
309 [L16, 1] [α4,α] [Ω2, 1] γ2 Ω 0 N N2 72 100 100 124
310 [L16, 1] [α8,α2] [Ω2,Ω] γ2 Ω2 N 1 N2 72 99o 98o 120
311 [L16, 1] [α8,α2] [Ω, 1] γ2 Ω2 N 1 N2 72 98o 98o 125
312 [L16, 1] [α8,α2] [Ω2, 1] γ2 Ω2 N 1 N 72 97o 99o 122
313 [L16, 1] [α, 1] [Ω2,Ω] γ2 Ω N 0 N 73 100o 98o 119
314 [L16, 1] [α, 1] [Ω, 1] γ2 Ω N 0 N 73 101o 97o 120
315 [L16, 1] [α, 1] [Ω2, 1] γ2 Ω N 0 N2 73 101o 100o 123
316 [L16, 1] [α4, 1] [Ω2,Ω] γ2 Ω N N N 73 100o 100o 119
317 [L16, 1] [α4, 1] [Ω, 1] γ2 Ω N N N 73 100 101 121
318 [L16, 1] [α4, 1] [Ω2, 1] γ2 Ω N N N2 73 107 103 121
319 [L16, 1] [α2, 1] [Ω2,Ω] γ2 Ω2 N2 N N2 73 99o 100o 120
320 [L16, 1] [α2, 1] [Ω, 1] γ2 Ω2 N2 N N2 73 98o 100o 122
321 [L16, 1] [α2, 1] [Ω2, 1] γ2 Ω2 N2 N N 73 100o 99o 121
322 [L16, 1] [α8, 1] [Ω2,Ω] γ2 Ω2 N2 1 N2 73 97o 97o 117
323 [L16, 1] [α8, 1] [Ω, 1] γ2 Ω2 N2 1 N2 74 99o 98o 118
324 [L16, 1] [α8, 1] [Ω2, 1] γ2 Ω2 N2 1 N 73 101 101 124

ofully optimized results

59

Case Bases Norms Coefficients XOR Gates
GF(28) GF(24) GF(22) ν N C D w = inv. S-box S-box−1 Both

325 [L2, 1] [α4,α] [Ω2,Ω] γ4 Ω 1 N N 72 99o 99o 124
326 [L2, 1] [α4,α] [Ω, 1] γ4 Ω 1 N N 72 98o 99o 122
327 [L2, 1] [α4,α] [Ω2, 1] γ4 Ω 1 N N2 72 99o 99o 127
328 [L2, 1] [α8,α2] [Ω2,Ω] γ4 Ω2 0 N N2 72 97o 99o 116
329 [L2, 1] [α8,α2] [Ω, 1] γ4 Ω2 0 N N2 72 98o 100o 124
330 [L2, 1] [α8,α2] [Ω2, 1] γ4 Ω2 0 N N 72 98o 99o 118
331 [L2, 1] [α, 1] [Ω2,Ω] γ4 Ω N2 1 N 73 102 102 123
332 [L2, 1] [α, 1] [Ω, 1] γ4 Ω N2 1 N 73 101 102 124
333 [L2, 1] [α, 1] [Ω2, 1] γ4 Ω N2 1 N2 74 102 105 124
334 [L2, 1] [α4, 1] [Ω2,Ω] γ4 Ω N2 N N 73 99o 99o 120
335 [L2, 1] [α4, 1] [Ω, 1] γ4 Ω N2 N N 73 98o 97o 121
336 [L2, 1] [α4, 1] [Ω2, 1] γ4 Ω N2 N N2 73 99o 100o 121
337 [L2, 1] [α2, 1] [Ω2,Ω] γ4 Ω2 N 0 N2 73 100o 102o 126
338 [L2, 1] [α2, 1] [Ω, 1] γ4 Ω2 N 0 N2 73 99o 102o 125
339 [L2, 1] [α2, 1] [Ω2, 1] γ4 Ω2 N 0 N 73 100o 103o 124
340 [L2, 1] [α8, 1] [Ω2,Ω] γ4 Ω2 N N N2 73 99o 98o 118
341 [L2, 1] [α8, 1] [Ω, 1] γ4 Ω2 N N N2 73 101o 102o 123
342 [L2, 1] [α8, 1] [Ω2, 1] γ4 Ω2 N N N 73 103 103 124
343 [L32, 1] [α4,α] [Ω2,Ω] γ4 Ω 1 N N 72 100 105 126
344 [L32, 1] [α4,α] [Ω, 1] γ4 Ω 1 N N 72 103 102 125
345 [L32, 1] [α4,α] [Ω2, 1] γ4 Ω 1 N N2 72 103 104 127
346 [L32, 1] [α8,α2] [Ω2,Ω] γ4 Ω2 0 N N2 72 101 99 123
347 [L32, 1] [α8,α2] [Ω, 1] γ4 Ω2 0 N N2 72 96o 96o 117
348 [L32, 1] [α8,α2] [Ω2, 1] γ4 Ω2 0 N N 72 99 101 120
349 [L32, 1] [α, 1] [Ω2,Ω] γ4 Ω N2 1 N 73 102 104 130
350 [L32, 1] [α, 1] [Ω, 1] γ4 Ω N2 1 N 73 103 103 125
351 [L32, 1] [α, 1] [Ω2, 1] γ4 Ω N2 1 N2 74 104 104 129
352 [L32, 1] [α4, 1] [Ω2,Ω] γ4 Ω N2 N N 73 102o 101o 126
353 [L32, 1] [α4, 1] [Ω, 1] γ4 Ω N2 N N 73 105 103 126
354 [L32, 1] [α4, 1] [Ω2, 1] γ4 Ω N2 N N2 73 105 104 128
355 [L32, 1] [α2, 1] [Ω2,Ω] γ4 Ω2 N 0 N2 73 102 102 124
356 [L32, 1] [α2, 1] [Ω, 1] γ4 Ω2 N 0 N2 73 99o 99o 118
357 [L32, 1] [α2, 1] [Ω2, 1] γ4 Ω2 N 0 N 73 99o 102o 125
358 [L32, 1] [α8, 1] [Ω2,Ω] γ4 Ω2 N N N2 73 102o 100o 124
359 [L32, 1] [α8, 1] [Ω, 1] γ4 Ω2 N N N2 73 100o 100o 124
360 [L32, 1] [α8, 1] [Ω2, 1] γ4 Ω2 N N N 73 103 104 122

ofully optimized results

60

Case Bases Norms Coefficients XOR Gates
GF(28) GF(24) GF(22) ν N C D w = inv. S-box S-box−1 Both

361 [L4, 1] [α4,α] [Ω2,Ω] γ8 Ω N 0 N 72 95o 97o 119
362 [L4, 1] [α4,α] [Ω, 1] γ8 Ω N 0 N 72 96o 97o 117
363 [L4, 1] [α4,α] [Ω2, 1] γ8 Ω N 0 N2 72 97o 98o 117
364 [L4, 1] [α8,α2] [Ω2,Ω] γ8 Ω2 1 N N2 72 97o 96o 118
365 [L4, 1] [α8,α2] [Ω, 1] γ8 Ω2 1 N N2 72 96o 94o 115
366 [L4, 1] [α8,α2] [Ω2, 1] γ8 Ω2 1 N N 72 95o 93o 116
367 [L4, 1] [α, 1] [Ω2,Ω] γ8 Ω N N N 73 96o 97o 114o

368 [L4, 1] [α, 1] [Ω, 1] γ8 Ω N N N 73 98o 96o 118
369 [L4, 1] [α, 1] [Ω2, 1] γ8 Ω N N N2 73 98o 99o 119
370 [L4, 1] [α4, 1] [Ω2,Ω] γ8 Ω N 0 N 73 97o 98o 119
371 [L4, 1] [α4, 1] [Ω, 1] γ8 Ω N 0 N 73 96o 97o 118
372 [L4, 1] [α4, 1] [Ω2, 1] γ8 Ω N 0 N2 73 99o 99o 117
373 [L4, 1] [α2, 1] [Ω2,Ω] γ8 Ω2 N2 1 N2 73 101 98 122
374 [L4, 1] [α2, 1] [Ω, 1] γ8 Ω2 N2 1 N2 74 98o 99o 120
375 [L4, 1] [α2, 1] [Ω2, 1] γ8 Ω2 N2 1 N 73 98o 98o 119
376 [L4, 1] [α8, 1] [Ω2,Ω] γ8 Ω2 N2 N N2 73 98o 95o 110o

377 [L4, 1] [α8, 1] [Ω, 1] γ8 Ω2 N2 N N2 73 97o 95o 116
378 [L4, 1] [α8, 1] [Ω2, 1] γ8 Ω2 N2 N N 73 99o 98o 120
379 [L64, 1] [α4,α] [Ω2,Ω] γ8 Ω N 0 N 72 99o 102o 127
380 [L64, 1] [α4,α] [Ω, 1] γ8 Ω N 0 N 72 102o 101o 128
381 [L64, 1] [α4,α] [Ω2, 1] γ8 Ω N 0 N2 72 99o 101o 128
382 [L64, 1] [α8,α2] [Ω2,Ω] γ8 Ω2 1 N N2 72 99o 98o 119
383 [L64, 1] [α8,α2] [Ω, 1] γ8 Ω2 1 N N2 72 99o 100o 120
384 [L64, 1] [α8,α2] [Ω2, 1] γ8 Ω2 1 N N 72 99o 98o 122
385 [L64, 1] [α, 1] [Ω2,Ω] γ8 Ω N N N 73 100o 100o 121
386 [L64, 1] [α, 1] [Ω, 1] γ8 Ω N N N 73 102o 100o 124
387 [L64, 1] [α, 1] [Ω2, 1] γ8 Ω N N N2 73 101 104 124
388 [L64, 1] [α4, 1] [Ω2,Ω] γ8 Ω N 0 N 73 98o 101o 123
389 [L64, 1] [α4, 1] [Ω, 1] γ8 Ω N 0 N 73 100o 99o 124
390 [L64, 1] [α4, 1] [Ω2, 1] γ8 Ω N 0 N2 73 103 101 121
391 [L64, 1] [α2, 1] [Ω2,Ω] γ8 Ω2 N2 1 N2 73 99o 100o 123
392 [L64, 1] [α2, 1] [Ω, 1] γ8 Ω2 N2 1 N2 74 102o 100o 122
393 [L64, 1] [α2, 1] [Ω2, 1] γ8 Ω2 N2 1 N 73 102 101 124
394 [L64, 1] [α8, 1] [Ω2,Ω] γ8 Ω2 N2 N N2 73 101o 99o 120
395 [L64, 1] [α8, 1] [Ω, 1] γ8 Ω2 N2 N N2 73 99o 99o 121
396 [L64, 1] [α8, 1] [Ω2, 1] γ8 Ω2 N2 N N 73 104 101 121

ofully optimized results

61

Case Bases Norms Coefficients XOR Gates
GF(28) GF(24) GF(22) ν N C D w = inv. S-box S-box−1 Both

397 [L8, 1] [α4,α] [Ω2,Ω] γ Ω N 1 N 72 102 103 125
398 [L8, 1] [α4,α] [Ω, 1] γ Ω N 1 N 72 103 101 123
399 [L8, 1] [α4,α] [Ω2, 1] γ Ω N 1 N2 72 104 102 123
400 [L8, 1] [α8,α2] [Ω2,Ω] γ Ω2 N 0 N2 72 102 102 120
401 [L8, 1] [α8,α2] [Ω, 1] γ Ω2 N 0 N2 72 99o 100o 119
402 [L8, 1] [α8,α2] [Ω2, 1] γ Ω2 N 0 N 72 99o 98o 121
403 [L8, 1] [α, 1] [Ω2,Ω] γ Ω N2 N N 73 102 104 123
404 [L8, 1] [α, 1] [Ω, 1] γ Ω N2 N N 73 102 103 120
405 [L8, 1] [α, 1] [Ω2, 1] γ Ω N2 N N2 73 105 109 123
406 [L8, 1] [α4, 1] [Ω2,Ω] γ Ω N2 1 N 73 103 107 129
407 [L8, 1] [α4, 1] [Ω, 1] γ Ω N2 1 N 73 102 104 125
408 [L8, 1] [α4, 1] [Ω2, 1] γ Ω N2 1 N2 74 105 105 128
409 [L8, 1] [α2, 1] [Ω2,Ω] γ Ω2 N N N2 73 104 105 125
410 [L8, 1] [α2, 1] [Ω, 1] γ Ω2 N N N2 73 102 104 121
411 [L8, 1] [α2, 1] [Ω2, 1] γ Ω2 N N N 73 102 105 125
412 [L8, 1] [α8, 1] [Ω2,Ω] γ Ω2 N 0 N2 73 103 102 121
413 [L8, 1] [α8, 1] [Ω, 1] γ Ω2 N 0 N2 73 102 103 119
414 [L8, 1] [α8, 1] [Ω2, 1] γ Ω2 N 0 N 73 100o 101o 123
415 [L128, 1] [α4,α] [Ω2,Ω] γ Ω N 1 N 72 103 101 127
416 [L128, 1] [α4,α] [Ω, 1] γ Ω N 1 N 72 101o 100o 120
417 [L128, 1] [α4,α] [Ω2, 1] γ Ω N 1 N2 72 104 104 128
418 [L128, 1] [α8,α2] [Ω2,Ω] γ Ω2 N 0 N2 72 100 100 118
419 [L128, 1] [α8,α2] [Ω, 1] γ Ω2 N 0 N2 72 97o 101o 122
420 [L128, 1] [α8,α2] [Ω2, 1] γ Ω2 N 0 N 72 102 102 123
421 [L128, 1] [α, 1] [Ω2,Ω] γ Ω N2 N N 73 103 104 122
422 [L128, 1] [α, 1] [Ω, 1] γ Ω N2 N N 73 101o 100o 122
423 [L128, 1] [α, 1] [Ω2, 1] γ Ω N2 N N2 73 104 103 127
424 [L128, 1] [α4, 1] [Ω2,Ω] γ Ω N2 1 N 73 104 105 126
425 [L128, 1] [α4, 1] [Ω, 1] γ Ω N2 1 N 73 100 102 125
426 [L128, 1] [α4, 1] [Ω2, 1] γ Ω N2 1 N2 74 107 106 131
427 [L128, 1] [α2, 1] [Ω2,Ω] γ Ω2 N N N2 73 103 105 124
428 [L128, 1] [α2, 1] [Ω, 1] γ Ω2 N N N2 73 100 101 122
429 [L128, 1] [α2, 1] [Ω2, 1] γ Ω2 N N N 73 101 105 128
430 [L128, 1] [α8, 1] [Ω2,Ω] γ Ω2 N 0 N2 73 98o 100o 118
431 [L128, 1] [α8, 1] [Ω, 1] γ Ω2 N 0 N2 73 97o 99o 120
432 [L128, 1] [α8, 1] [Ω2, 1] γ Ω2 N 0 N 73 101o 101o 121

ofully optimized results

62

 INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2

8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 013 2

Naval Postgraduate School
Monterey, CA 93943-5100

3. Alan Hunsberger 2

National Security Agency
9800 Savage Road, Ste. 6538
Fort Meade, MD 20755-6538

4. Douglas Fouts, Code EC/Fs 1

Naval Postgraduate School
Monterey, CA 93943-5207

5. David Canright, Code MA/Ca 10

Naval Postgraduate School
Monterey, CA 93943-5216

